Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Research & Studies

Copper Content and Export in European Vineyard Soils Influenced by Climate and Soil Properties

The article was written with the contribution of Gergely Tóth deputy-director of iASK and was released in Environmental Science & Technology in 2021.

 

Abstract

Copper-based fungicides (Cuf) are used in European (EU) vineyards to prevent fungal diseases. Soil physicochemical properties locally govern the variation of the total copper content (Cut) in EU vineyards. However, variables controlling Cut distribution at a larger scale are poorly known. Here, machine learning techniques were used to identify governing variables and to predict the Cut distribution in EU vineyards. Precipitation, aridity and soil organic carbon are key variables explaining together 45% of Cut distribution across EU vineyards. This underlines the effect of both climate and soil properties on Cut distribution. The average net export of Cu at the EU scale is 0.29 kg Cu ha–1, which is 2 orders of magnitude less than the net accumulation of Cu (24.8 kg Cu ha–1). Four scenarios of Cuf application were compared. The current EU regulation with a maximum of 4 kg Cu ha–1 year–1 may increase by 2% of the EU vineyard area, exceeding the predicted no-effect concentration (PNEC) in soil in the next 100 years. Overall, our results highlight the vineyard areas requiring specific remediation measures and strategies of Cuf use to manage a trade-off between pest control and soil and water contamination.

 

Keywords: copper-based fungicides, total copper content, predicted no-effect concentration

 

The article is available HERE.