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 A B S T R A C T

Risk-based control charts have recently been introduced to address measurement uncertainty. 
The statistical properties of a risk-based control chart for detecting a shift have not been studied. 
In addition to the control chart design, performance evaluation is important for detecting 
changes in the process. In this paper, the effectiveness of a risk-based 𝑋̄ control chart (recently 
introduced) in the presence of measurement uncertainty is investigated. By utilizing a risk-based 
model that considers the cost of decision outcomes, the impact of measurement uncertainty on 
the 𝑋̄ chart’s performance in both in- and out-of-control scenarios is designed and examined. To 
lessen the risk associated with measurement uncertainty, the Nelder–Mead search technique is 
employed to find the optimal control limits. The performance metrics include the total decision 
cost, cost ratio, probability ratio, and average run length. Simulation and real-world data 
analyses are employed to assess the efficiency of the risk-based chart via various performance 
metrics. A sensitivity analysis is conducted to identify the constraints and relevance of the 
risk-based 𝑋̄ chart in statistical process control.

. Introduction

Statistical process control (SPC) is a technique that is typically employed in operations management to regulate a process or 
roduction method. Control charts are a key tool of SPC employed to assess whether a company or manufacturing process is in 
 condition of control, meaning that it is stable and varies only from sources common to the process. [1]. In SPC, a process is 
onsidered statistically controlled when the measured values of a product attribute stay within the specified limits [2]. A control chart 
s designed to monitor process stability and identify assignable causes quickly. The design of the control chart involves information 
bout the statistical distribution of quality characteristics, sample size (𝑛), sampling interval (ℎ), plotting statistics, and control limits 
lower, center, and upper limits) [1,3,4]. Typically, these parameters are chosen on the basis of only statistical criteria, including 
he average count of samples collected before a signal is triggered, known as the average run length (ARL). The effectiveness of the 
ontrol chart is gauged by the speed at which a change in the process parameter is identified; this can be articulated in terms of 
he ARL. Consequently, the selection of the statistical restriction depends on the control chart’s configuration, which should exhibit 
 high in-control ARL value before signaling when the process remains under control and a low out-of-control ARL value upon any 
hange in one or more process parameters. Therefore, a control chart’s efficacy and performance evaluation are crucial in addition 
o design.
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The 𝑋̄ control chart, introduced by Shewhart [2], is utilized by many companies to enhance process quality. A key benefit 
is its straightforward setup and ease of use, leading to its widespread application in controlling the variability in the quality 
attribute of concern for a product or service [5]. Nonetheless, it is somewhat less responsive to minor and moderate alterations 
and considers independent and identically distributed (iid) data points. When data are autocorrelated or nonnormally distributed, 
the control chart’s efficacy decreases because if not accounted for during design, this data behavior increases the probability of 
false alarms [6–8]. Moreover, economic aspects are not specifically considered in the statistical construction of the 𝑋̄ control chart. 
Because of this, Duncan [9] presented the economic design of the Shewhart chart, in which the predicted cost function is minimized 
to establish the parameters. Various authors have created distinct modifications (economic and adaptive) of the classic 𝑋̄ chart to 
increase its effectiveness in identifying small and moderate shifts [10–13].

Nonnormality and independence are not the only factors that can reduce the effectiveness of the traditional 𝑋̄ chart. The 
chart functions on a reliability foundation and neglects the measurement uncertainty (MU) [14–17]. Nonetheless, the MU of 
the system results in faulty choices such as unwarranted production halts or overlooked actions [18,19], and the impact of 
measurement uncertainty on statistical process control has been studied by Abraham [20]; Asif et al. [21]; Hu et al. [22]; Linna 
et al. [23]; Maravelakis [24]; Sabahno et al. [25]; Saghaei et al. [26]; Aslam [27]; Zaidi et al. [28]; Jawad Mirza et al. [29]; Carrillo 
et al. [30]; Shojaee et al. [31]; Ahmadini et al. [32] and references therein. Consequently, the creation of innovative approaches to 
reduce the number of erroneous decisions during the assessment of effects is crucial for SPC research and requires investigation.

In the literature, numerous approaches have been proposed to optimize the cost or risk arising because of the measurement 
uncertainty of the system (see [31,33]). All these approaches are based on either statistical design (SD), economic design (ED) or 
economic statistical design (ESD) to optimize the process cost or risk adjustment. However, no approach considers the cost of the 
decision of outcomes of the process in designing the control chart and overall adjusting the risk together. A risk-based (RB) strategy 
was developed as a solution by Kosztyán et al. [34] that considers all possible outcomes to minimize the chances of erroneous 
results amid parameter uncertainty. The risk-based control charts use simulation and optimization to select the optimal values of 
the chart parameters to minimize the risks arising from incorrect decisions related to process control. In contrast to Shewhart and 
ESD control charts, the RB strategy considers the effect of measurement errors and accounts for the costs of each decision outcome 
during control chart design [34]. Despite the nonnormal distribution of measurement errors, the risk-based strategy was highly 
successful in lowering decision costs. Subsequently, Hegedűs and Kosztyán [35]; Kosztyán et al. [36] examined a risk-based method 
in conformity testing, whereas Hegedűs et al. [37]; Kosztyán and Katona [38]; Kosztyán and Katona [39] created risk-based control 
charts for managing statistical processes. Katona [16] confirmed the potency of the risk-based approach in compliance and control 
charts by using industrial datasets. Katona et al. [40] developed univariate risk-based charts on average by considering measurement 
uncertainty. Saghir et al. [41] designed two new RB average control charts for monitoring the autoregressive processes. The results 
from all these studies show that a risk-based approach effectively reduces decision costs. However, all these investigations focused 
solely on risk-based control charts, and there has been no research assessing the statistical effectiveness of these charts in identifying 
a shift (assignable cause) in the process within the literature. This represents a significant research void in the SPC literature, and 
this study seeks to address it.

The primary objectives of this study are to (i) investigate and assess the statistical effectiveness of the univariate risk-based 
𝑋̄ chart amid measurement uncertainty, (ii) analyze the statistical indicators both in situations that are within control and those 
that are not, (iii) confirm the findings through simulation and actual data, and (iv) offer practical advice to engineers and decision 
makers. This is how the rest of the article is organized: Section 2 outlines the risk-oriented structure of the 𝑋̄ chart. The performance 
metrics of the risk-based 𝑋̄ are established in Section 3 for both in-control and out-of-control process conditions. The findings are 
shown in Section 4. A sensitivity analysis is given in Section 5. Section 6 concludes the article with a summary and suggestions for 
the future.

2. The risk-based design of the 𝑿̄ chart

According to Kosztyán and Katona [39], the risk-based 𝑋̄ control chart can be developed for Phase-I analysis in the following 
four steps: (1) determining the parameters for the traditional control chart, (2) assessing decision costs, (3) calculating total costs, 
and (4) optimizing the control limit.

2.1. Calculation of limits

Let 𝑋𝑖𝑗 be an 𝑖th (𝑖 = 1, 2,… , 𝑚) sample of size 𝑗 (𝑗 = 1, 2,… , 𝑛) drawn i.i.d. from any parent distribution having 𝐸(𝑋) = 𝜇 and 
variance (𝑋) = 𝜎2. For simplicity, we assume that 𝑋𝑖,𝑗 ∼ 𝑁(𝜇, 𝜎2). The sample statistics for the 𝑖th sample for the 𝑋̄ chart can be 
computed as follows [42]: 

𝑋̄𝑖 =
1
𝑛

𝑛
∑

𝑗=1
𝑋𝑖𝑗 , 𝑖 = 1, 2,… , 𝑚 (1)

The sampling distribution of 𝑋̄𝑖 ∼ 𝑁(𝜇, 𝜎2∕𝑛),∀𝑖 = 1, 2,… , 𝑚 [1]. The control limits of the 𝑋̄ chart can be calculated as follows: 
𝑈𝐶𝐿𝑋̄ = 𝜇 + 𝑘𝑢

𝜎
√

𝑛
(2)

𝐿𝐶𝐿𝑋̄ = 𝜇 − 𝑘𝑙
𝜎
√

(3)

𝑛
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Table 1
Results of a statistical process control decision.
 Actual feature property Noticed feature property
 In-control Out-control  
 In-control 𝑐11 𝑐10  
 Out-control 𝑐01 𝑐00  

where 𝜇 denotes the average and 𝜎 denotes the standard deviation of the data; 𝑘𝑙 and 𝑘𝑢 are the lower and upper quantile points, 
respectively, of the sampling distribution of the means for a prespecified false alarm rate, usually set 𝛼=0.0027 [1]; and 𝑈𝐶𝐿𝑋̄ and 
𝐿𝐶𝐿𝑋̄ denote the upper and lower control limits, respectively. In the case of a symmetric (like normal) distribution, 𝑘𝑙 = 𝑘𝑢 = 𝑘. The 
process parameters in applications are typically unknown and are calculated via preliminary samples (Phase I) under the assumption 
of an in-control process. On the basis of these data, the average 𝜇 is calculated as follows: 

̄̄𝑋 = 1
𝑚

𝑚
∑

𝑖=1
𝑋̄𝑖 =

1
𝑚

𝑚
∑

𝑖=1

(

1
𝑛

𝑛
∑

𝑗=1
𝑋𝑖𝑗

)

(4)

and the process standard deviation 𝜎 is determined from the standard deviation of the sample mean 𝑋̄𝑖 as follows: 

𝑠 =

(

1
𝑚 − 1

𝑚
∑

𝑖=1
(𝑋̄𝑖 − ̄̄𝑋)2

)
1
2

(5)

The sample estimate of the standard deviation defined in Eq. (5) is a biased estimator of 𝜎. In the SPC literature, it is recommended 
to adjust 𝑠 for unbiasedness via 𝑠∕𝑐4, where 𝑐4 is an unbiased constant that depends on sample size (𝑛) and is tabulated in [1] and 
other related books.

2.2. Cost estimation

Measurement uncertainty can be determined via measurement error models: (i) a simple additive model and (ii) a linear covariate 
measurement model. Bennett [43] were the pioneers who investigated the effect of measurement errors on the 𝑋̄ chart using a simple 
additive model. Later, Abraham [20]; Kanazuka [44]; Mittag and Stemann [45]; Kosztyán et al. [36] used this simple additive model 
in control charts and acceptance sampling. Linna and Woodall [46] introduced a more general linear covariate error model, which 
has been considered in many studies, including [25,28,30], etc. In this work, we have considered the simple additive model proposed 
by Bennett [43] because it is a simple and fundamental model in error modeling. Moreover, the conformity of the product is judged 
on the basis of the observed (measured) value following Kosztyán et al. [34]; Kosztyán and Katona [39]. However, further study 
may be conducted using a linear covariate error model in RB control charts.

Owing to measurement errors (𝜖) distorting the true value of the monitored product characteristic (𝑥), each observed value (𝑦) 
can be represented by the simple linear model in the following way: 

𝑦𝑖 = 𝑥𝑖 + 𝜖𝑖, 𝑖 = 1, 2,… , 𝑚. (6)

where 𝑥 refers to the measured product characteristic without the MU, 𝜖 is the measurement uncertainty/error of the system 
(independent of 𝑥) and 𝑦 represents the observed values that contain the MU. The probability density functions (PDFs) of 𝑥 and 𝜖 are 
presumed to be known. Moreover, the PDF of 𝜖 can be obtained from the producer’s documentation on the measuring instrument 
and the analysis of the measurement system, or it can be approximated from the calibrations. For simplicity, we assume that 
𝜖𝑖,𝑗 ∼ 𝑁(0, 𝜎2𝜖 ); however, any parent distribution can be assumed to have an expected value of 0.

On the basis of the real characteristics (𝑥) and observed values with the MU (𝑦) of an SPC, the results of the 𝑋̄ chart can be 
categorized as follows: (i) correct acceptance, (ii) type I error, (iii) type II error, and (iv) correct control. Table  1 illustrates the 
arrangement of the decision cost results on the basis of the actual and observed characteristics of the product.

where 𝑐11 represents the cost of correct acceptance, 𝑐10 is the cost of a type I error (false control), 𝑐01 signifies the cost of a type 
II error (false acceptance), and 𝑐00 refers to the cost of correct control when an out-of-control condition is accurately identified.

By examining the cost components obtained from the manufacturer’s ERP system, the cost of each choice can be assessed. For a 
more thorough explanation of decision cost estimation, readers are encouraged to consult [38], which outlines the key components 
and offers a practical example of the estimation procedure.

2.3. Calculation of total cost

ED control charts, proposed by Duncan [9], involve determining key chart parameters (such as sample size, control limits, and 
sampling intervals) to achieve minimum expected cost (operational costs). In contrast, the RB approach emphasizes the consequences 
of decision-making (measured in terms of cost) rather than the operational costs of the control process itself. It focuses on the cost of 
wrong decisions, such as failing to detect an out-of-control condition or issuing a false alarm during process monitoring. Therefore, a 
new evaluation measure, namely, total decision cost (TC), was formulated by Kosztyán and Katona [38], which determined the total 
3 
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cost while considering all the consequences during process monitoring. Mathematically, the 𝑇𝐶 (an economic measure) considering 
the decision outcomes and associated cost of each decision given in Table  1 is defined as follows: 

𝑇𝐶 = 𝐶11 + 𝐶10 + 𝐶01 + 𝐶00 = 𝑞11𝑐11 + 𝑞10𝑐10 + 𝑞01𝑐01 + 𝑞00𝑐00 (7)

where 𝐶𝑎𝑏 represents the total cost associated with a particular decision outcome, 𝑞𝑎𝑏 indicates the number of instances (cases) that 
occurred during the control and 𝑐𝑎𝑏 denotes the cost of each decision estimated/assessed by the ERP system (see [40]).

2.4. Optimization

In applications, the actual quality features 𝑋𝑖,𝑗 are not immediately visible; instead, they can be evaluated only on the basis 
of the outcomes (𝑌1,𝑗 , 𝑌2,𝑗 ,… , 𝑌𝑚,𝑗) of a collection of 𝑚 ≥ 1 measurement procedures, each of which equals the simple linear error 
model defined in Eq. (6). For sample 𝑖th, the sample statistics for 𝑋̄ based on observable measurements 𝑌𝑖,𝑗 with the MU can be 
computed as follows: 

𝑌𝑖 =
1
𝑛

𝑛
∑

𝑗=1
𝑌𝑖𝑗 =

1
𝑛

( 𝑛
∑

𝑗=1
𝑋𝑖𝑗 +

𝑛
∑

𝑗=1
𝜖𝑖𝑗

)

= 𝑋̄𝑖 + 𝜖𝑖, 𝑖 = 1, 2,… , 𝑚 (8)

The sampling distribution of 𝑌𝑖 ∼ 𝑁
(

𝜇, 𝜎
2+𝜎2𝜖
𝑛

)

 is because 𝐸(𝜖𝑖) = 0, where 𝜎2𝜖  is assumed to be a constant and is independent of 
the process mean 𝜇.

Thus, the control limits of the risk-based 𝑋̄ chart under the MU are defined as follows: 

𝑈𝐶𝐿𝑋̄𝑟𝑏
= 𝜇 + 𝑘𝑥

(

𝜎 + 𝜎𝜖
)

√

𝑛
(9)

𝐿𝐶𝐿𝑋̄𝑟𝑏
= 𝜇 − 𝑘𝑥

(

𝜎 + 𝜎𝜖
)

√

𝑛
(10)

where 𝑘𝑥 is a charting parameter of the risk-based mean chart and is chosen to minimize the expected losses or risks by decision 
outcomes, not simply set at a quantile for a fixed type I error rate (𝛼), as is typically done in risk-adjusted control charts. Unlike risk-
adjusted charts [47], which account for measurement error but do not incorporate the costs or impacts of decisions, the risk-based 
approach explicitly integrates these considerations into the chart design.

To find the optimal limits for the risk-based 𝑋̄ chart, the total decision cost (𝑇𝐶) is reduced by fine-tuning the charting parameters 
𝑘𝑥 in the following manner: 

minimize
(

𝑘𝑥
)

𝑇𝐶(𝑘𝑥)

subject to 𝑘𝑥 > 0

∀ 𝑘𝑥 ∈ 𝐑

(11)

Eq. (11) is a simple optimization problem and can be solved via any optimization method, such as the Nelder–Mead approach or the 
genetic algorithm. Let 𝑘∗𝑥 be an optimal solution of Eq. (11), which denotes the optimal correction constant depending on the sample 
size (n), the observed process distribution, the measurement error distribution, and the decision outcome costs (𝑐𝑎𝑏). It minimizes 
the total loss from these choices while striking a balance between type I and type II errors. This approach allows greater flexibility 
and realism, especially in contexts where the costs of false alarms and missed detections are asymmetric or context dependent.

3. Performance measures

The efficiency of a control chart is typically assessed by its ARL, defined as the anticipated count of observations presented on a 
control chart before an alert is activated [1]. Until a process operates at an in-control state, the ARL (denoted by 𝐴𝑅𝐿0) is desired to 
be sufficiently large, usually 𝐴𝑅𝐿0 = 370.4, because an alarm would be a misleading indication. Conversely, an alert from the control 
chart for a process that is out of control, i.e., a genuine signal, must be generated as soon as possible so that the ARL (represented by 
𝐴𝑅𝐿1) reflecting the detection delay remains minimal. Readers are referred to [1,48] for detailed information on how to measure 
the efficiency of control charts. In SPC, a control chart (CC) is assessed using either a zero-state (ZS) or a steady-state (SS) ARL. The 
SSARL measures the average time required for the CC to identify a process shift for control statistics to reach a static distribution. 
While ZSARL is the number of samples taken from the start of signal monitoring in an out-of-control situation (cf., [49,50]). In this 
study, we use ZSARL to compare the performance of the charts under study.

If the process deviates from the standard specifications, it should be identified as feasible, considering the modifications (shifts) 
in terms of standard deviation units, i.e., 𝜇1 = 𝜇0+𝛿𝜎0, 𝛿 ∈ 𝑅. In terms of statistical inference, the performance of a CC is equivalent 
to testing the hypotheses;

𝐻0 ∶ 𝜇1 = 𝜇0 vs 𝐻𝑎 ∶ 𝜇1 ≠ 𝜇0

The process is operating in a control state when 𝛿 = 0, and the average does not change (𝜇1 = 𝜇0). In contrast, when 𝛿 > 0 or 𝛿 < 0, 
the average shifts upward (positive) or downward (negative), and the process moves into an out-of-control state (𝜇 ≠ 𝜇 ).
1 0

4 
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The risk-based 𝑋̄ chart is designed on the basis of all four decision outcomes of a process as described in Section 2. Stated 
differently, it is designed on the basis of the joint distribution of 𝑥 and 𝑦, characteristics with all possibilities. The evaluation of the 
risk-based 𝑋̄ chart in a given state, either 𝛿 = 0 or 𝛿 ≠ 0, is determined through conditional analysis (performance) of these limits 
under the given condition, i.e., the evaluation of 𝑦’s conditional distribution given 𝑥. If 𝐻0 is true, the decision outcomes of the 
process under in-control conditions (i.e., 𝛿 = 0) correspond to the cases in the first row of Table  1. The total conditional cost of the 
process under 𝐻0 is then calculated as follows: 

𝑇𝐶𝐼𝑛 = 𝐶11 + 𝐶10 = 𝑞11𝑐11 + 𝑞10𝑐10 (12)

where 𝐶𝑎𝑏, 𝑞𝑎𝑏 and 𝑐𝑎𝑏 have the same meaning as defined in Eq. (7).
Thus, the probability of type I error (𝛼) of the risk-based 𝑋̄ chart is as follows:

𝛼 = 𝑃𝑟𝑜𝑏(conditional decision outcome 𝑞10)

= 𝑃𝑟
(

𝑦̄ ∉
(

𝐿𝐶𝐿𝑟𝑏, 𝑈𝐶𝐿𝑟𝑏
)

and 𝑥̄ ∈ (𝐿𝐶𝐿,𝑈𝐶𝐿) | 𝛿 = 0
)

= 𝑃𝑟
(

𝑦̄ ∉
(

𝐿𝐶𝐿𝑟𝑏, 𝑈𝐶𝐿𝑟𝑏
)

| 𝑥̄ ∈ (𝐿𝐶𝐿,𝑈𝐶𝐿) , 𝛿 = 0
)

.𝑃 𝑟 (𝑥̄ ∈ (𝐿𝐶𝐿,𝑈𝐶𝐿) |𝛿 = 0)

= ∫𝑦̄∉(𝐿𝐶𝐿𝑟𝑏 ,𝑈𝐶𝐿𝑟𝑏
)

𝑓𝑦̄(𝑦̄|𝑥̄ ∈ (𝐿𝐶𝐿,𝑈𝐶𝐿)) 𝑑𝑦̄.∫𝑥̄∈(𝐿𝐶𝐿,𝑈𝐶𝐿)
𝑓 (𝑥̄) 𝑑𝑥̄

where 𝑓𝑦̄(𝑦̄|𝑥̄ ∈ (𝐿𝐶𝐿,𝑈𝐶𝐿)) is the probability density function of the observed mean given the actual process state. The joint 
distribution of (𝑦̄, 𝑥̄) and/or the conditional distribution of (𝑦̄|𝑥̄) are required to evaluate the above integral under 𝐻0. When 𝑥𝑖 is 
normally distributed and 𝑦𝑖 is a linear model, as assumed in our study, then the joint distribution of 𝑥̄𝑖 and 𝑦̄𝑖 is a bivariate normal 
distribution, i.e., (𝑥̄𝑖, 𝑦̄𝑖

)

∼ 𝐵𝑉 𝑁
((

𝜇
𝜇

)

,
(

𝜎2 𝜎2

𝜎2 𝜎2 + 𝜎2𝜖

))

. Analytically, evaluating this integral is more complicated. Alternatively, 
simulation studies can be used to evaluate 𝛼 by the conditional count of 𝑞10 based on the samples numerically. It can be defined as 
follows: 

𝛼 =
𝑛
(

𝑦̄ ∉
(

𝐿𝐶𝐿𝑟𝑏, 𝑈𝐶𝐿𝑟𝑏
)

∩ 𝑥̄ ∈ (𝐿𝐶𝐿,𝑈𝐶𝐿) |𝛿 = 0
)

𝑛(𝑆)
(13)

where 𝑛(𝐴) denotes the number of favorable outcomes and 𝑛(𝑆) denotes the total number of outcomes in the simulation. Similarly, 
the decision outcomes correspond to the cases in the second row of Table  1 when a shift occurs (𝛿 ≠ 0). Moreover, the total 
conditional decision cost of the process for the out-of-control state is as follows: 

𝑇𝐶𝑜𝑢𝑡 = 𝐶01 + 𝐶00 = 𝑞01𝑐01 + 𝑞00𝑐00 (14)

Afterward, the probability of correctly rejecting (1-𝛽) the risk-based 𝑋̄ chart can be calculated as follows:
1 − 𝛽 = 𝑃𝑟𝑜𝑏(conditional decision outcome 𝑞00)

= 𝑃𝑟
(

𝑦̄ ∉
(

𝐿𝐶𝐿𝑟𝑏, 𝑈𝐶𝐿𝑟𝑏
)

and𝑥̄ ∉ (𝐿𝐶𝐿,𝑈𝐶𝐿) , 𝛿 ≠ 0
)

.𝑃 𝑟 (𝑥̄ ∉ (𝐿𝐶𝐿,𝑈𝐶𝐿) |𝛿 = 0)

= ∫𝑦̄∉(𝐿𝐶𝐿𝑟𝑏 ,𝑈𝐶𝐿𝑟𝑏
)

𝑓𝑦̄(𝑦̄|𝑥̄ ∉ (𝐿𝐶𝐿,𝑈𝐶𝐿)) 𝑑𝑦̄.∫𝑥̄∉(𝐿𝐶𝐿,𝑈𝐶𝐿)
𝑓 (𝑥̄) 𝑑𝑥̄

The joint distribution of 𝑥̄ and 𝑦̄ or the conditional distribution of 𝑦̄ given 𝑥̄ and 𝛿 ≠ 0 becomes more complex under 𝐻𝑎. Again, 
simulation can be used to approximate the probability of correctly signaling an out-of-control state as follows: 

1 − 𝛽 =
𝑛
(

𝑦̄ ∉
(

𝐿𝐶𝐿𝑟𝑏, 𝑈𝐶𝐿𝑟𝑏
)

∩ 𝑥̄ ∉ (𝐿𝐶𝐿,𝑈𝐶𝐿) | 𝛿 ≠ 0
)

𝑛(𝑆)
(15)

where the conditional count of 𝑞00 can be obtained from Eq. (14). The total probability of rejecting (signal) the process can be 
calculated as follows: 

𝑃 (signal) = 𝑝∗ = 𝛼.𝑃 (𝐼𝐶) + (1 − 𝛽).𝑃 (𝑂𝑂𝐶) (16)

where 𝑃 (𝐼𝐶) and 𝑃 (𝑂𝑂𝐶) are the probabilities of the actual process state being in control and out of control, respectively.
The ARLs of the risk-based 𝑋̄ chart for both scenarios are computed as follows: 

𝐴𝑅𝐿0 =
1
𝛼

(17)

𝐴𝑅𝐿1 =
1

1 − 𝛽
(18)

Moreover, there is a limit on the overall cost of the risk-based 𝑋̄ chart design, which is determined by taking the related costs 
of the four possible outcomes. Therefore, two other performance measures, namely, (i) the cost ratio (CR) and (ii) the probability 
ratio (PR), (the ratio of the chance of incorrect acceptance/rejection to the chance of correct acceptance/correct rejection), of the 
associated decision are used for deeper evaluations of the risk-based methodology. These performance measures, when 𝛿 = 0 and 
𝛿 ≠ 0, are defined as follows: 

𝐶𝑅0 =
𝐶10 (19)

𝐶11
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𝑃𝑅0 =
𝑞10
𝑞11

(20)

and 

𝐶𝑅1 =
𝐶01
𝐶00

(21)

𝑃𝑅1 =
𝑞01
𝑞00

(22)

, respectively. 
4. Numerical results

This section assesses the effectiveness of the risk-based 𝑋̄ chart in overseeing the process mean amid measurement uncertainty 
with 𝛿 = 0 and 𝛿 ≠ 0 conditions. First, the simulation outcomes are shown to assess the effectiveness of the risk-based 𝑋̄ chart 
for both conditions in Section 4.1. Furthermore, real-world data are utilized to assess the effectiveness of the chart mentioned in 
Section 4.2.

4.1. Evaluation through simulation

In this subsection, the risk-based 𝑋̄ is constructed following the methodology of Kosztyán and Katona [38] and Katona et al. [40] 
for simulated data. The optimized constant for the given chart is found via Eq. (11) through the Nelder–Mead simplex technique. 
Afterward, the performance metrics of the risk-based 𝑋̄ chart are examined. All calculations are performed via R software.

Phase I analysis

In the SPC, phase I analysis is conducted to analyze historical data and establish a stable process. It helps in estimating the control 
limits and detecting special causes to clean the data and achieve a stable, ‘‘in-control’’ process [4]. The simulation is conducted 
following the work of Katona [16] to design and construct the efficacy of the risk-based 𝑋̄ chart. We use Phase I samples for 
both actual and measurement error characteristics drawn from a normal distribution with specified known parameters. Using these 
samples, the plotting statistics, the average and the standard deviations of the plotting statistics, the charting constant and the 
control limits are determined without and with optimization. The following steps are executed in the simulation to construct the 
risk-based 𝑋̄ chart:

1. Draw a size 𝑛 random sample drawn from the actual product’s distribution (𝑥) and measurement uncertainty (𝜖).
2. Estimate the observed product (𝑦𝑖) via Eq. (6) from the data generated in step (1).
3. Calculate the sample statistics and control limits for 𝑥 and 𝑦 via Eqs. (1)–(10).
4. Determine the number of decisions associated with the statistic via Table  1.
5. Compute the overall decision cost according to Eq. (7).
6. Find the optimal constant via Eq. (11) and modify the control limits.
7. Repeat steps (1–6) 1000 times. At this point, we have the control limits and optimal parameters based on 1000*n observations.
8. Steps (1–7) are iterated 100 times to report the average results.

Algorithm 1 provides a detailed description of the procedure for calculating the optimal chart constant, assessing the total cost, 
and deriving decision outcomes for the RB chart in Phase I analysis.

Algorithm 1 Pseudocode for the RB chart in Phase I cost optimization
1: Input: 𝑜𝑏𝑠, 𝑛, 𝜇𝑋 , 𝑣𝑎𝑋 , 𝑠𝑘𝑋 , 𝑘𝑢𝑋 , 𝜇𝑒, 𝑣𝑎𝑒, 𝐶, confidence_level, bounds [𝐿𝐾𝐿,𝑈𝐾𝐿]
2: Generate true process data 𝑋 ←generate(obs, 𝜇𝑋, 𝑣𝑎𝑋, 𝑠𝑘𝑋, 𝑘𝑢𝑋) 
3: Generate measurement error data 𝑈𝐶 ← data_gen(obs, 𝜇𝑒, 𝑣𝑎𝑒, 0, 3) 
4: Define a cost function 𝑓 (𝐾) ← total cost from rbxcc(X, UC, C, n, confidence_level, K) 
5: Optimize 𝐾∗ by minimizing 𝑓 (𝐾) over [𝐿𝐾𝐿,𝑈𝐾𝐿] using numerical optimization 
6: Evaluate the risk-based chart result 𝐻 ← rbxcc(X, UC, C, n, confidence_level, 𝐾∗) 
7: Add the optimal 𝐾∗ to the result: 𝐻.𝑝𝑎𝑟 ← 𝐾∗

8: Output: Optimal 𝐾∗, total cost (𝐶0), decision outcomes (𝑃1 to 𝑃4), control limits (𝑇1 to 𝑇4), 𝑥𝑏𝑎𝑟, 𝑦𝑏𝑎𝑟

The calculation of the performance of the RB chart in out-of-control scenarios based on the total decision cost, cost ratio, 
probability of the signal, and average run length is explained in Algorithm 2.

The parameters of the actual process and measurement error distributions, sample size, decision cost and number of repetitions 
are required inputs of this simulation study. A comprehensive list of the simulation’s input parameters, akin to [40], is presented 
here in Table  2. An actual R code is provided in the supplementary material for reproducibility of the results.

Using simulation, the optimal constant, control limits, decision outcome and total decision cost of the original (Shewhart) and 
risk-based 𝑋̄ charts for different sample sizes (n) are obtained and reported in Table  3. In Table  3, ‘O’ denotes the traditional/original 
6 
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Algorithm 2 Pseudocode for the RB chart in Phase II analysis
1: Input: 𝑜𝑏𝑠, 𝑛, 𝜇𝑋 , 𝑣𝑎𝑋 , 𝑠𝑘𝑋 , 𝑘𝑢𝑋 , 𝜇𝑒, 𝑣𝑎𝑒, 𝐶, 𝛿, 𝐿𝐶𝐿, 𝑈𝐶𝐿, 𝐿𝐶𝐿𝑟𝑏, 𝑈𝐶𝐿𝑟𝑏
2: Generate true process data 𝑋 ←generate(obs, 𝜇𝑋, 𝑣𝑎𝑋, 𝑠𝑘𝑋, 𝑘𝑢𝑋, 𝛿) 
3: Generate measurement error data 𝑈𝐶 ← data_gen(obs, 𝜇𝑒, 𝑣𝑎𝑒, 0, 3) 
4: Define a cost function 𝑓 (𝐶) ← total cost from phase2 (obs, n, X,UC, C, LCL, UCL, 𝐿𝐶𝐿𝑟𝑏, 𝑈𝐶𝐿𝑟𝑏, 𝛿) 
5: Output: total cost (𝑇𝐶𝑖𝑛 or 𝑇𝐶𝑜𝑢𝑡), decision cost of outcomes (𝐶11, 𝐶10 or 𝐶01, 𝐶00), cost ratio (𝐶𝑅0 or 𝐶𝑅1), probability ratio 
(𝑃𝑅0 or 𝑃𝑅1 accordingly.

Table 2
Simulation parameters.
 Notation Definition Value  
 𝜇𝑥 Process expected value 10  
 𝜎𝑥 Process standard deviation 0.5  
 𝜎𝜖 Standard deviation of measurement uncertainty 0.05  
 𝑚 Number of data observations generated 1000  
 𝑛 Sample size (1,2,3,4,5,8) 
 𝑟 Number of simulations for each chart 100  
 𝑐11 Cost of correct acceptance 1  
 𝑐10 Cost of incorrect control 5  
 𝑐01 Cost of incorrect acceptance 60  
 𝑐00 Cost of correct control 5  
 𝛼 level of significance in Shewhart scheme 0.0027  

Table 3
Control limits, decision results, and overall decision cost in Phase I.
 n Type k LCL UCL 𝑞11 𝑞10 𝑞01 𝑞00 𝑇𝐶  
 1 O 3 8.49 11.51 997.1 0.3 0.2 2.4 1024.8 
 RB 2.95 8.51 11.49 996.8 0.6 0 2.6 1012.8 
 2 O 3 8.94 11.06 996.8 0.4 0.4 2.3 1035.1 
 RB 2.95 8.95 11.05 996.1 1.1 0 2.7 1015.4 
 3 O 3 9.13 10.86 997.2 0.3 0.2 2.2 1024.4 
 RB 2.97 9.14 10.85 996.9 0.6 0 2.5 1012.1 
 4 O 3 9.25 10.75 996.9 0.4 0.3 2.3 1030.2 
 RB 2.94 9.26 10.74 996.5 0.9 0 2.7 1014.1 
 5 O 3 9.32 10.67 996.8 0.3 0.4 2.5 1032.4 
 RB 2.96 9.33 10.66 996.5 0.6 0 2.8 1014.5 
 8 O 3 9.46 10.53 997.2 0.3 0.3 2.2 1025.4 
 RB 2.94 9.48 10.52 996.8 0.7 0 2.5 1012.9 

charts, and ‘RB’ denotes the risk-based 𝑋̄ charts. To visualize the results, boxplot diagrams for each type are constructed at different
n values and are provided in Fig.  1. The vertical axes of the figure display the median and distribution of the overall cost for both 
strategies over a range of n values.

Table  3 shows that the risk-based strategy reduces the overall cost of the process through optimization and outperforms the 
conventional chart does. An identical conclusion can be drawn in Fig.  1. Furthermore, the mean values of the charting constant (k) 
decrease following optimization. Optimization reduces the control area to avoid false acceptance, as type II errors result in far more 
severe outcomes (i.e., substantially higher decision costs), and both type I and type II errors are balanced in the risk-based chart, 
as evident in Table  3. The error counts for type I and type II were lower for the risk-based type than for the original type 𝑋̄ chart. 
The results likewise do not indicate any connection between sample size and an ideal value of 𝐾. Similar conclusions can be drawn 
regarding the overall decision cost, which does not vary with changes in sample size. These results support the findings of Katona 
et al. [40].

Phase II analysis

Phase II analysis is usually implemented in SPC to monitor the process using control limits established in Phase I and detect shifts 
in the process over time [1]. The performance of the risk-based chart (designed on the basis of the Phase I samples) is evaluated 
here for a Phase II sample generated under 𝐻0 and 𝐻𝑎. The real and measurement error values are again simulated as Phase II data, 
and the control limits given in Table  3 are deployed to estimate the conditional decision outcomes, total decision cost, CR, PR and 
ARL. The findings for 𝛿 = 0 are shown in Table  4.

Table  4 shows that the conditional total decision cost (TC) of the 𝑋̄ chart for both types (original and risk-based) is almost equal 
when the process is in control. Additionally, the cost ratio (CR) is slightly different for both approaches but is not significant, but 
the ARL for both approaches is significantly different than the fixed value of 𝐴𝑅𝐿 =370 (usually set). Both approaches produce 
0
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Fig. 1. Distribution of the simulation’s total cost for n = 1, 2, 3, or 5 in Phase I.

Table 4
Phase II conditional performance of the 𝑋̄ chart when 𝛿 = 0.
 n Type 𝑞11 𝑞10 𝑇𝐶 CR PR ARL  
 1 O 997.1 0.3 998.5 0.0015 0.0003 3333 
 RB 996.8 0.6 999.7 0.0030 0.0006 1667 
 2 O 996.7 0.4 998.9 0.0020 0.0004 2500 
 RB 996.5 0.6 999.5 0.0030 0.0006 1667 
 3 O 997.2 0.4 999.3 0.0020 0.0004 2500 
 RB 996.9 0.7 1000.2 0.0035 0.0007 1428 
 5 O 996.9 0.4 998.9 0.0020 0.0004 2500 
 RB 996.7 0.6 999.9 0.0030 0.0006 1667 

smaller associated type I errors (underestimating the desired 𝛼 = 0.0027). This discrepancy arises from how parameter estimation 
affects the efficacy of 𝑋̄, as examined by numerous scholars, including [51–53]. Although this issue can be addressed via ‘‘the 
guaranteed in-control performance approach’’ (see [52]), it is not considered here. Among the compared approaches, the risk-based 
approach is the least affected by parameter estimation. In this study, the limits are estimated on the basis of 25 samples. Moreover, 
no relationship between sample size and the in-control performance indicators is observed.

Additionally, the conditional effectiveness of the considered chart is checked when the process deviates from control. The 
conditional decision outcomes, total decision cost, CR, PR, ARL and 𝑝∗ are calculated for 𝛿 = 0.5, 1.0, 1.5, 2.0 and reported here 
in Tables  5–7 when n = 1,2,3. To visualize the results, boxplot diagrams of the Phase II conditional distribution of total decision 
cost are constructed for 𝛿 = 1, 1.5 and n = 1,2, as shown in Fig.  2. The total decision cost curves and ARL curves for various values 
of 𝛿 and 𝑛 = 1, 2 in the Phase II analysis are presented in Fig.  3 and Fig.  4, respectively.

The results of Tables  5–7 imply that when 𝛿 ≠ 0:
8 
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Table 5
Phase II conditional performance of the 𝑋̄ chart when 𝛿 ≠ 0 and n = 1.
 𝛿 type 𝑞01 𝑞00 𝑇𝐶𝑜𝑢𝑡 CR PR ARL 𝑝∗  
 0.5 O 0.5 5.1 54.7 1.17 0.15 185.18 0.0000 
 RB 0.3 5.3 44.3 0.68 0.09 172.41 0.0000 
 1. 0 O 2.1 19.6 221.5 1.28 0.11 51.02 0.0004 
 RB 1.3 20.4 177.5 0.76 0.06 49.01 0.0004 
 1. 5 O 4.6 60.8 576.9 0.90 0.08 16.45 0.0040 
 RB 2.6 62.7 470.2 0.49 0.04 15.95 0.0041 
 2. 0 O 9.1 146.5 1281.0 0.74 0.06 6.84 0.0228 
 RB 5.3 150.3 1072.0 0.42 0.03 6.65 0.0234 

Table 6
Phase II conditional performance of the 𝑋̄ chart when 𝛿 ≠ 0 and n = 2.
 𝛿 Type 𝑞01 𝑞00 𝑇𝐶𝑜𝑢𝑡 CR PR ARL 𝑝∗  
 0.5 O 0.9 10.5 110.6 1.03 0.09 95.24 0.0001 
 RB 0.6 10.8 92.5 0.67 0.06 92.59 0.0001 
 1. 0 O 4.0 52.9 506.1 0.91 0.08 18.90 0.0030 
 RB 3.0 54 450.6 0.67 0.06 18.52 0.0031 
 1. 5 O 10.3 179.9 1516.9 0.69 0.06 5.56 0.0196 
 RB 7.1 183.1 1339.8 0.46 0.04 5.46 0.0199 
 2. 0 O 15.7 417.3 3029.1 0.45 0.04 2.39 0.1807 
 RB 1.7 422.3 2755 0.05 0.02 2.37 0.1829 

Table 7
Phase II conditional performance of the 𝑋̄ chart when 𝛿 ≠ 0 and n = 3.
 𝛿 Type 𝑞01 𝑞00 𝑇𝐶𝑜𝑢𝑡 CR PR ARL 𝑝∗  
 0.5 O 1.4 14.9 157.1 1.13 0.10 67.11 0.0002 
 RB 0.9 15.4 134 0.70 0.06 64.94 0.0002 
 1. 0 O 6.6 99.9 896.2 0.79 0.07 10.01 0.0106 
 RB 4.2 102.3 766.4 0.49 0.04 9.80 0.0109 
 1. 5 O 14.0 337.3 2529 0.50 0.04 2.96 0.1185 
 RB 8.6 342.7 2232.2 0.30 0.02 2.91 0.1204 
 2. 0 O 14.2 671 4207 0.25 0.02 1.49 0.4597 
 RB 8.7 676.5 3906.1 0.15 0.01 1.47 0.4635 

• The RB chart outperforms the original chart in terms of decreased conditional total decision cost (𝑇𝐶𝑜𝑢𝑡) across all sample sizes. 
This is similarly illustrated in Fig.  2. The number of type II errors decreases while the number of correct rejections increases 
for the RB approach at different values of n.

• The value of 𝑇𝐶𝑜𝑢𝑡 for each type of chart increases as n increases for a fixed value of 𝛿. Additionally, this can be seen in Fig. 
3. This is because a larger number of inspection units leads to an increase in the overall inspection costs.

• The RB chart also outperforms the original chart in terms of the decrease in the conditional decision cost ratio (CR) for a 
given sample size. A high CR indicates that the cost of making an incorrect acceptance decision is greater than that of making 
a correct rejection. The occurrence of type II errors decreases while the number of correct rejections increases in the RB 
approach, causing a reduction in the CR value. This conclusion holds for all sample sizes.

• The RB chart also outperforms the original chart when the probability ratio (PR) is considered. A high PR value suggests that 
the likelihood of making an incorrect acceptance decision exceeds that of making a correct rejection at a constant value of n. 
This is attributed to a reduced incidence of type II errors and an increased number of correct rejections resulting from the RB 
approach. These findings are consistent across all sample sizes.

• Compared with the original chart, the RB chart shows enhanced ARL performance for all sample sizes. Fig.  4 also implies the 
same pattern. A reduction in the ARL value indicates improved ARL performance as the value of n increases, which is in line 
with earlier research. (see [1,3,6,52]).

• For all sample sizes, the RB chart displays improved overall signal performance compared to the original chart. Additionally, 
when 𝛿 is fixed, the likelihood of signals (𝑝∗) increases as 𝑛 increases.

In general, the risk-based 𝑋̄ chart outperforms the original 𝑋̄ chart concerning TC, CR, PR, and ARL in identifying a shift more 
rapidly during out-of-control situations. If the process is out of control, a higher conditional total cost results in smaller ARL values 
because a greater number of correct rejections results in a greater associated cost and fewer samples to signal a shift. These findings 
demonstrate the advantages of using the risk-based approach in process improvement under measurement uncertainty.
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(a) 𝛿 = 1

(b) 𝛿 = 1.5

Fig. 2. Distribution of the total conditional decision cost for 𝛿 = 1,1.5 and n = 1,2.

4.2. Evaluation through a real dataset

The efficacy of the risk-based 𝑋̄ graphic is additionally assessed via a real dataset developed by Katona [16] and examined 
by Katona et al. [40]. We use the same dataset to demonstrate how to implement the proposed design step by step in practice. 
The selected product was master brake cylinders manufactured by the automotive industry (cf., [54]). Two product characteristics 
(attributes) were examined: cutting length (the full-stroke length of the piston) and core diameter (internal bore diameter). These two 
components play important roles in the manufacturing quality, performance, and cost efficiency of a master brake cylinder [55,56]. 
The dataset is available in the rbcc package with the name t2uc (). In the dataset, each attribute was measured twice via a 3D 
optical scanner and a manual height gauge (caliper). The 50 measurements were recorded with 1 product each time. The ‘‘true’’ 
values (indicated as x) signify the accurate measurement of the cutting length via a 3D optical scanner, whereas the ‘‘measured’’ 
value (denoted as y) is derived via a manual height gauge (caliper). Following the values of 𝑥 and 𝑦, the measurement error was 
also calculated with the simple additive model given in Eq. (6) for each 𝑖th measurement. The finance department estimated the 
expenses of the four possible outcomes as 𝐶 = (1, 20, 160, 5) [16].

To demonstrate the application of the 𝑋̄ chart, we consider the cutting length as a quality characteristic to be monitored in 
this automotive manufacturing process [16]. In practice, a change in the mean cutting length and an increase or decrease in the 
average length of material being cut during machining can directly impact the quality, consistency, and reliability of a master brake 
cylinder [56]. Using these realizations, we subsequently implement the suggested plan to track the cutting length and identify any 
variations in the process average. The following are the specific implementation steps.

Step 1: Estimate the mean and standard deviation of the real values (𝑥) and observed values (𝑦) on the basis of the Phase-I data. 
We obtain an average of 84.49 and a standard deviation of 0.07 for ‘‘real’’ values, whereas ‘‘observed’’ values have a mean of 84.54 
and a standard deviation of 0.08. Thus, the estimated characteristics of the data highlight that measurement uncertainty exists in a 
3D optical scanner.
10 
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Fig. 3. Total decision cost curves for different shift sizes at n = 1 and 2.

Table 8
Limits, decisions, and the overall cost of decisions on an actual dataset.
 Type k LCL UCL 𝑞11 𝑞10 𝑞01 𝑞00 𝑇𝐶 
 O 3 84.30 84.70 48 2 0 0 88  
 RB 3.82 84.24 84.75 50 0 0 0 50  

Step 2: Choose the desired 𝑛, IC ARL, and cost structure 𝐶. Determine the control limits and 𝑘 on the basis of 𝑛 = 1, and the 
IC ARL=370 using the original Shewhart-based approach. Start monitoring the average of the cutting length process and obtain 
plotting statistics 𝑋̄ in Eq. (1) for 𝑥𝑖 and 𝑦𝑖, 𝑖 = 1, 2,… , 50. These are compared with the standard control limits, and each decision 
outcome and overall cost of the process are calculated using Eq. (7). Optimize the total cost function for the optimum value of 𝑘
via the Nelder–Mead algorithm.

Consequently, we obtained the results given in Table  8. The outcome of Table  8 aligns with the findings of Katona et al. [40]. 
Finally, we construct the original and proposed risk-based 𝑋̄ charts on the cutting length data, as shown in Fig.  5. The ‘‘real’’ process 
is shown by the black lines, whereas the ‘‘measure’’ sample values are represented by the blue lines. Both the observed and real data 
were used to create the control lines, which are shown as dashed lines. Finally, the green dots indicate Type 1 errors. As shown in 
Fig.  5, the process works within the specifications using a risk-based methodology approach (which incorporates the measurement 
uncertainty) because no points fall outside the actual control lines (blue). The application of the original approach (which does 
not consider measurement uncertainty in the design) produces two incorrect signals (type I errors) on the basis of the observed 
measurements. These signals are not due to a shift but are due to incorrect measurements.

Step 3: Implementation of the risk-based design in Phase II analysis requires the out-of-control samples of the master brake 
cylinder. Collecting out-of-control samples from actual production processes in industry can be expensive and difficult. Therefore, we 
11 
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Fig. 4. ARL curves for different shift sizes at n = 1 and 2.

Fig. 5. 𝑋̄ charts showing actual and estimated processes for Phase-I in-control data.
12 
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Table 9
Phase-II measurements after 𝛿 = 1 and plotting statistics for the actual dataset.
 j 𝑥𝑗 𝜖𝑗 𝑦𝑗 j 𝑥𝑗 𝜖𝑗 𝑦𝑗 j 𝑥𝑗 𝜖𝑗 𝑦𝑗  
 1 84.671 0.069 84.740 18 84.565 0.035 84.600 35 84.565 0.095 84.660 
 2 84.594 −0.034 84.560 19 84.480 0.020 84.500 36 84.656 0.064 84.720 
 3 84.666 −0.066 84.600 20 84.509 0.061 84.570 37 84.589 0.111 84.700 
 4 84.638 −0.008 84.630 21 84.533 0.077 84.610 38 84.541 0.139 84.680 
 5 84.685 −0.055 84.630 22 84.492 0.068 84.560 39 84.483 0.037 84.520 
 6 84.493 0.077 84.570 23 84.606 0.054 84.660 40 84.638 0.062 84.700 
 7 84.507 0.023 84.530 24 84.556 −0.026 84.530 41 84.539 0.171 84.710 
 8 84.617 0.083 84.700 25 84.633 −0.013 84.620 42 84.577 0.063 84.640 
 9 84.619 0.001 84.620 26 84.566 0.054 84.620 43 84.713 −0.063 84.650 
 10 84.627 0.053 84.680 27 84.498 0.022 84.520 44 84.525 0.035 84.560 
 11 84.570 0.080 84.650 28 84.422 −0.043 84.379 45 84.378 −0.027 84.351 
 12 84.616 0.074 84.690 29 84.545 −0.015 84.530 46 84.550 0.150 84.700 
 13 84.415 0.085 84.500 30 84.517 0.083 84.600 47 84.527 −0.002 84.525 
 14 84.487 0.093 84.580 31 84.577 0.043 84.620 48 84.563 0.107 84.670 
 15 84.613 −0.083 84.530 32 84.675 0.135 84.810 49 84.628 0.012 84.640 
 16 84.630 0.010 84.640 33 84.555 0.005 84.560 50 84.616 0.014 84.630 
 17 84.513 0.017 84.530 34 84.553 0.087 84.640   

Fig. 6. 𝑋̄ charts showing actual and estimated processes for 𝛿 = 1.

purposefully add a shift of 1𝜎 to the true measurements (𝑥+0.07) to manufacture the OC samples. The Phase-II 𝑥𝑗 and corresponding 
𝑦𝑗 with 𝜖𝑗 for j = 1, . . . , 50 and 𝑛 = 1 are displayed in Table  9. Since individual values have been accounted for, the plotting statistics 
𝑋̄𝑗 = 𝑥𝑗 and 𝑌𝑗 = 𝑦𝑗 are used.

Step 4: The mean of the Phase-II true measurements is 84.566, which is shifted from the in-control mean 𝜇0 by 1𝜎 times 
(i.e., 𝜇1 = 𝜇0 + 1𝜎). The mean control chart for Phase-II analysis using the traditional and risk-based approaches to determine the 
detectability is constructed in Fig.  6. The black and blue lines have the same meanings as in the description in Fig.  5, and the red 
dots indicate whether proper rejection occurred (shift detected). The ‘RB’ mean chart detects the process shift (at the 32nd sample) 
earlier than the ‘O’ mean chart (at the 43rd sample) even a smaller shift (𝛿 = 1), as shown in Fig.  6. Such a rise in the average level 
suggests an intolerable component mismatch, which could be caused by incorrect sensor alignment, surface reflectivity, vibration, 
etc., preventing the components from self-adjusting appropriately. The manufacturing process needs to be reexamined.

Step 5: After correctly identifying the out-of-control reasons and fixing the problem, we return to Step 1 to revise the design of 
the chart and restart the monitoring procedure for the manufacturing process.

5. Sensitivity analysis

The applicability of the risk-based 𝑋̄ chart depends on several parameters, as outlined in the preceding section, when 𝛿 = 0. The 
sensitivity analysis looks at the effects of the following parameters.

• Sample size (n)
• Decision cost of correct rejection (𝑐00)
• Shift size (𝛿)
• standard deviation (𝜎 )
𝑈𝐶
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Fig. 7. Analysis of sensitivity for n.

These parameters were selected because of their significant influence on the chart’s out-of-control behavior. The expense of 
correct rejection could influence the feasibility of the control policy. The chart’s effectiveness can be assessed by examining the 
sample size, the shift magnitude, and the standard deviation of the product measurement inaccuracies. In the sensitivity analysis, 
we examine the identical simulation parameters listed in Table  2 with a few alterations.

5.1. Sample size (n)

When any control charts are used, the sample size is an important consideration. A larger sample size yields a more accurate 
assessment of the production process, but it also increases production costs. Furthermore, the performance metrics are significantly 
affected by the sample size. The overall decision cost is used to evaluate the performance of the risk-based chart for different 
sample sizes. Simulation is used to assess how the sample size affects the overall decision cost of the process for different shift sizes 
(𝛿 = 0, 0.5,… , 4). Fig.  7 displays the simulation outcomes. For a given shift size, the total decision cost increased dramatically as the 
sample size increased. However, as shown in Fig.  7, the overall cost of the decision is not significantly affected by larger sample 
sizes or shift sizes. These findings indicate that, especially for small to moderate shift sizes, the performance of a risk-based chart 
is sensitive to changes in sample size (n).

5.2. Cost of correct rejection (𝑐00)

The risk-based design minimizes the cost of Type II errors (𝑐01) during the control process and increases the cost of correct 
decisions (𝑐00). Therefore, it is essential to examine the connection between the cost of the correct decision, the total cost of the 
decision, and the size of the change (𝛿). During the analysis, 𝑐00, 𝛿, and 𝜎𝑢𝑐 vary, whereas the other parameters remain unchanged. 
The ratio of the cost of proper rejection to the cost of incorrect acceptance is represented by values of 𝑐00. The results are presented 
in Fig.  8 for 𝑛 = 2. The 𝑥-axis in the figure represents the values of 𝑐00, the 𝑦-axis represents the overall cost of the decision, the 
color ‘lines’ represents the values of 𝛿 ranging from 0–3, and each subfigure (panel) is constructed at the given value of 𝜎𝑢𝑐 (ve) 
ranging from 0.5–5. These settings are also considered in the following figures.

Fig.  8. reveals that (i) for a fixed value of 𝛿 > 0 and 𝜎𝑢𝑐 , 𝑇𝐶 increases with increasing 𝑐00; (ii) for a fixed value of 𝜎𝑢𝑐 , 𝑇𝐶
increases with increasing 𝑐00 and 𝛿; and (iii) at a given value of 𝛿, 𝑇𝐶 increases with increasing 𝑐00 and 𝜎𝑈𝐶 . Thus, a higher value 
of the correct rejection cost increases the total number of decisions (𝑇𝐶). A higher correction decision can be made by reducing 
type II errors, but this entails a strict control policy.

5.3. Shift size (𝛿)

Control charts of the Shewhart type help identify significant changes, whereas memory-based control charts (EWMA, CUSUM, 
and MA charts) are better at spotting minute changes in the process parameter(s). Consequently, the magnitude of the shift greatly 
impacts the assessment of control charts. Various shift sizes (from small to large) are considered, and the overall decision cost is 
used to assess the 𝑋̄ chart’s statistical performance. The simulation outcomes are shown in Fig.  9.

For a fixed value of 𝑐00 and 𝜎𝑢𝑐 , 𝑇𝐶 increases when the shift size (𝛿) increases, and at a given value of 𝜎𝑢𝑐 , 𝑇𝐶 likewise increases 
as 𝑐  and 𝛿 increase. These results verify the detectability of the risk-based chart for minor to major process changes.
00
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Fig. 8.  Sensitivity analysis for the cost of correct rejection.

Fig. 9. Sensitivity analysis for shift size.

5.4. Measurement error (𝜎𝑈𝐶)

The out-of-control behavior of the risk-based chart may also be influenced by the standard deviation of the measurement error. 
Therefore, if the uncertainty in the measurement can be defined, its impact can be simulated during the design and assessment 
of a risk-based chart. The efficiency of the risk-based chart is also examined, as 𝜎𝑈𝐶 related to the process increases here. Fig.  10 
displays the outcomes of this analysis for 𝑛 = 2.

For a given value of 𝑐00 and 𝛿, the value of 𝜎𝑈𝐶 does not significantly affect the total conditional decision cost of an out-of-control 
process except for a very high cost of correct acceptance (𝑐 ≥ 100) or/and a large shift size (𝛿 ≥ 2), as is obvious from Fig.  10. Thus, 
00
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Fig. 10.  Analysis of sensitivity for measurement error (𝜎𝑈𝐶 ).

the performance of the risk-based 𝑋̄ chart shows little sensitivity to the standard deviation of the measurement error, particularly 
for minor changes.

6. Conclusions

In a more industrialized setting, the precision of measurements is crucial. Measurement uncertainty should be acknowledged and 
considered when decisions are being made. Consequently, it is crucial to create process control strategies that consider measurement 
uncertainty and the outcomes of decisions. To address measurement uncertainty, [38–40] presented a novel family of control charts 
(risk-based charts) for the SPC. Nonetheless, neither in-control nor out-of-control scenarios have been utilized to assess the statistical 
effectiveness of risk-based charts. The efficacy of the risk-based control chart under in-control and out-of-control conditions with 
measurement uncertainty was a crucial factor in addition to its design. The primary objective of this study was to analyze the 
effectiveness of risk-based control charts in both in-control and out-of-control scenarios that consider measurement uncertainty in 
performance metrics.

A univariate risk-based chart 𝑋̄ is analyzed to assess its statistical effectiveness amid measurement uncertainty. The performance 
under conditional circumstances is assessed for the SPC’s in-control and out-of-control states. Assessment is performed not only in 
simulated scenarios but also in actual circumstances. Furthermore, we believe that improving the correct rejection rate and reducing 
the average number of samples needed before shift detection can be effortlessly achieved through the use of risk-based control charts. 
The results reveal that the risk-based average control chart minimizes the overall decision cost of the process when the process is 
in a state of in-control and correctly identifies the changes when the process is out-of-control.

The primary contributions of this paper are listed below. First, the relevance of the risk-based method is greatly enhanced by 
examining its statistical effectiveness in identifying a change in the SPC (𝐶1). This work opens new room for the development of 
family risk-based charts via a statistical design such as a guaranteed in-control approach [52], a percentile-based approach [57], etc. 
Second, the increase in correct rejection decision costs and decrease in ARL (early signal) can be attained with average charts (𝐶2). 
This suggests that companies dealing with simple processes can leverage risk-based charts to lower total decision costs, enhance 
correct rejection, and identify early signals. Third, validating the statistical assessment of a risk-based graph via practical data 
underscores the importance of its practical application in balancing the risks faced by producers and consumers in the SPC (𝐶3). 
Fourth, the practitioner is guided in selecting the necessary parameters for the risk-based charts in the SPC application via sensitivity 
analysis of the relevant parameters (𝐶4).

One future study is an integration of EWMA with the proposed model, and the authors are working in this direction. Other future 
research avenues include the statistical design and assessment of more risk-based charts.
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