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 A B S T R A C T

This study examines the dynamic evolution of global trade networks from 1995 to 2020 using the Organization 
for Economic Co-operation and Development’s (OECD’s) intercountry input–output (ICIO) data. This research 
combines multilayer network theory methods with advanced statistical and econometric procedures, including 
dynamic multilayer network analysis methods, (bi)clustering, and causal analyses to evaluate the temporal 
nature of structural, sectorial and country-level indicators. The primary objective of this study is to identify 
causal patterns in multilayer trade network structures and reveal the roles of specific countries and industries 
as drivers of changes in global trade dynamics. Using the proposed methods, we define causal graphs 
between the structural indicators of the multilayer network. The resulting causal graph is organized into 
groups using modularity analysis, and the relationships are biclustered, thereby determining which structural 
factors/industries/countries affect other country groups/industries and revealing the dynamics of structural 
changes. We determine which factors change simultaneously and which factors and actors exhibit a delay 
between their changes. The analysis reveals significant shifts in structural indicators, highlighting the evolving 
roles of major players like China and the US. The findings indicate that the structural indicators of 
trade networks/industries/countries often move in unison, with changes in one country/industry potentially 
triggering rapid transformations across the entire network. This study also uncovers the cascading effects of 
economic disruptions on trade patterns, emphasizing the interconnectedness of countries and industries in the 
face of global economic changes. These insights are crucial for policymakers and business leaders, underscoring 
the need for adaptive strategies to enhance the level of resilience of countries and industries to persistent global 
economic fluctuations and crises.
1. Introduction

At the same time as this study was submitted, the US administration 
announced a large increase in tariffs, with which they intend to bring 
in a new era in world trade; thus, this study, which aims to explore 
the actors, industries, and structural relationships of global trade, could 
perhaps not be timelier. Examining the structural changes in trade 
networks (Rauch, 2001; He and Deem, 2010; Guo et al., 2023) – 
especially now, in this rapidly changing economic environment – is 
essential, as these changes frequently reflect wider economic and social 
transitions within the economy and society (Stolte and Emerson, 2021; 
Mahutga, 2006). Shifts in trade patterns may indicate changes in con-
sumer preferences (Janeba, 2007), technical progress (Guerrieri, 1999; 
Yi and Dan, 2021), the rise of new markets (Antonelli, 2002; Alamsyah 
et al., 2023), or geopolitical realignments (Barbieri, 2024), thereby im-
pacting local economies and global market dynamics (Bartesaghi et al., 
2022; Antonelli, 2002). Furthermore, examining these alterations may 
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reveal power transitions among countries (Li et al., 2024), which can 
both be a consequence of political and economic decisions (Kosztyán 
et al., 2024b) and influence further political decisions (Milner, 2017), 
and highlight the interdependence of economies in a progressively 
globalized environment (Kosztyán et al., 2024b). Comprehending these 
structural alterations not only assists in forecasting future economic 
trends but also enables the recognition of the weaknesses and opportu-
nities within trade systems (Sun et al., 2022), thus enhancing strategic 
decision-making and promoting sustainable development (Xu et al., 
2025).

Recent literature has emphasized the importance of examining trade 
networks through various lenses (Xu et al., 2025; Li et al., 2024). Focus-
ing on actual policy changes and their consequences (Kosztyán et al., 
2024b), rather than hypothetical scenarios, offers a more accurate 
reflection of trade policy impacts on economic outcomes (Goldberg and 
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Pavcnik, 2016; Ortiz et al., 2021). He and Deem (2010) and Guo et al. 
(2023) highlighted the importance of investigating structural changes 
in trade networks, while Stolte and Emerson (2021) and Mahutga 
(2006) explored how these changes reflect wider economic and social 
transitions and political decisions (Kosztyán et al., 2024b). Janeba 
(2007) focused on the role of consumer preferences in shaping trade 
patterns, and Antonelli (2002) examined the impact of technological 
progress and new market emergence on global market dynamics. More 
recent studies, such as Li et al. (2024), have delved into power transi-
tions among countries, with Kosztyán et al. (2024b) dealing with the 
structural changes in trade networks caused by political and economic 
decisions and crises.

Despite the wealth of research in this area, significant gaps in our 
understand the causal patterns within trade network structures and the 
identification of key drivers of change among countries and sectors 
remain. Traditional methods have often focused on static analyses or 
limited time frames, failing to capture the dynamic nature of trade 
relationships and their evolution over extended periods. There is a 
call for more sophisticated methodologies that can explore complex 
interplay among the economic, political, and social factors driving trade 
network dynamics. Additionally, many studies have focused only on 
single-layer networks and have not fully explored the multilayered 
nature of trade networks, which can provide deeper insights into the 
complex interactions between different industries and countries.

To address these gaps, this study employs advanced methodologies 
including the temporal analysis of multilayer networks, clustering, 
biclustering, and causality analysis. These methods enable the dynamic 
and causal analysis of structural indicators at the structural, country 
and industry levels. By utilizing these techniques, we can explore the 
interplay between industries and countries’ trade relations, which is 
particularly relevant to the eve of the imminent trade war at the 
time of writing this paper. This approach is particularly important 
in the context of persistent global economic fluctuations and crises, 
as we can gain a deeper understanding of how economic disruptions 
affect trade relations and network structure, which can inform more 
effective policymaking and business strategies to enhance the degree 
of resilience to future challenges.

The main research question of our study is as follows:

RQ What causal patterns can be identified in multilayer trade net-
work structures, and how do these patterns reveal the roles of 
specific countries and industries as drivers of change in global 
trade dynamics?

The methodological framework employed in this study is grounded 
in established theoretical principles for causal identification in mul-
tidimensional interactive systems, particularly those involving simul-
taneous country–industry–structural attribute dependencies. Granger 
causality testing provides a theoretically sound approach for disen-
tangling temporal precedence relationships in complex economic net-
works where simultaneity bias and reverse causality are prominent 
concerns (Hamilton, 2020). Recent advances in network econometrics 
demonstrate that Granger causality, when applied to structural network 
indicators, effectively captures propagation mechanisms in multilay-
ered systems where traditional instrumental variable approaches fail 
due to the absence of valid exclusion restrictions (Siggiridou et al., 
2019). The integration of Bayesian validation methods (Bayesian Vec-
tor Autoregression (BVAR), Markov Chain Monte Carlo (MCMC) analy-
sis, Bayesian Factor Approach (BFA)) addresses the fundamental chal-
lenge of parameter uncertainty in finite samples, which is particularly 
relevant for trade network analysis where structural breaks and non-
linearities can confound classical inference (Koop et al., 1996; Celani 
et al., 2024). Biclustering methodology complements causality anal-
ysis by simultaneously identifying groups of causal relationships and 
network nodes that exhibit coherent temporal patterns, addressing 
the curse of dimensionality inherent in multi-country, multi-industry 
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systems (G. Silva et al., 2024). This methodological combination is 
theoretically justified because trade networks exhibit what Carvalho 
and Gabaix (2013) term ‘‘granular origins of aggregate fluctuations’’, 
where microlevel (country–industry) shocks propagate through net-
work structures to generate macrolevel patterns, requiring both tempo-
ral precedence identification (Granger causality) and structural pattern 
recognition (biclustering) to fully characterize the transmission mech-
anisms; however, to the best of our knowledge these methods are not 
used together.

2. Background

In the current economic environment, especially at the beginning 
of another tariff war, it is particularly important to understand the 
dynamics of trade networks, that is, the interaction of actors and indus-
tries. The evolution of network science, boosted by the accessibility of 
vast datasets and improved processing capabilities, has revolutionized 
how academics and practitioners study complicated systems such as 
trade networks (Xu et al., 2025). The volatility of trade arising from 
political conflicts, economic crises, and health emergencies has un-
derscored the interconnectedness among trade relationships and their 
effects on economic stability (Wang et al., 2023). While individual 
countries struggle with the consequences of such disruptions, trying 
to take countermeasures to reduce these effects, these measures are 
quite limited due to the interconnectedness of trade networks (Zhao 
et al., 2024). The increased degree of interdependence of countries in 
the global trade environment has amplified the possibility of failure 
propagation across international trade networks (Kang et al., 2024).

Research on the time-series analysis of trade networks has employed 
predominantly dynamic network theory to examine trade relationships 
over time (Yazawa, 2023). However, very few studies have addressed 
the causal investigation of the structural characteristics of trade net-
works or the exploration of impact mechanisms. Forecasting has been 
applied using Inter-Country Input-Output (ICIO) (Chen, 2024). These 
approaches have been instrumental in identifying the key drivers of 
trade network evolution and predicting future trade patterns (Chen, 
2024).

While network analysis has been extensively used, causality analysis 
within trade networks has been less common but not entirely absent. 
Granger causality tests and vector autoregression models have been 
employed to determine the causal relationships between different coun-
tries’ economic activities, providing insights into how changes in one 
country can influence the trade dynamics of other countries (Saimul 
and Darmawan, 2020). One study has utilized Graph Neural Networks 
(GNNs) to model causal relationships in trade networks (Monken et al., 
2021), particularly in response to major economic events such as trade 
wars or financial crises. Causal inference techniques have also been 
explored to understand how external shocks propagate through trade 
relationships; offering a deeper perspective on economic dependen-
cies (Rigana et al., 2021). However, to our knowledge, no study has 
explored the causal relationships and mechanisms of effects among 
countries, industries, and structural properties of the network. Further-
more, biclustering methods have not yet been applied in commercial 
networks, although combining this method with causality analysis 
makes it possible to determine close causal groups that simultaneously 
affect other factors. Biclustering (G. Silva et al., 2024) can allow 
for the identification of subgroups of countries and industries with 
similar trade behaviors, revealing hidden trade patterns and depen-
dencies. This approach could improve our understanding of how trade 
clusters respond to global shocks, aiding policymakers in optimizing 
trade agreements. Investigating biclustering in trade networks would 
enhance the analytical depth beyond traditional clustering methods, 
potentially uncovering new strategic trade insights.

Recent network-based approaches to international trade and Global 
Value Chains (GVCs) have mapped the architecture of globalization and 
documented salient topological regularities, but typically in single-layer 
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or sector-specific settings (Liu et al., 2025). Kali and Reyes (2007) that 
a country’s structural position in the global trade network – beyond 
trade volumes – matters for growth, yet their analysis is single-layer and 
relies on two cross-sections (1992, 1998), without modeling temporal 
causality among structural indicators (Kali and Reyes, 2007). Cerina 
et al. (2015) construct the World Input–Output Network is used to char-
acterize the large-scale topology, providing an important benchmark 
for system-wide structure but not a multilayer, temporal causal analy-
sis (Cerina et al., 2015). More recently, Piccardi et al. (2024) introduce 
a network-based measure of GVC ‘‘length’’, revealing heterogeneous, 
geography-sensitive adjustments in global value networks; however, 
their focus is on measuring extension and communicability rather than 
forecasting or identifying temporal precedence among network indi-
cators (Piccardi et al., 2024). Sectoral contributions, such as analysis 
by Russo et al. (2023) of automotive multilayer clusters, uncover twin 
dynamics of regionalization and cross-region integration, but remain 
industry-focused and descriptive with respect to network evolution 
and inter-indicator causality (Russo et al., 2023). Complementing these 
strands, the survey by Amador and Cabral (2016) synthesizes drivers 
and measures of GVCs but does not prescribe a multilayer, time-ordered 
causal modeling framework (Amador and Cabral, 2016).

Our study advances this literature along four fronts. First, we build 
a dynamic, multilayer network from Organisation for Economic Co-
operation and Development (OECD) ICIO data at the country–industry 
level over a long horizon (1995–2020), enabling system-wide, cross-
sector generality beyond single-sector or short-window analyses (cf. 
Russo et al., 2023; Piccardi et al., 2024). Second, we move from 
descriptive topology to mechanisms by applying temporal (classical and 
Bayesian Granger and instantaneous) causality tests to structural indi-
cators across layers, thereby identifying drivers and propagation path-
ways among countries, industries, and network properties—an aspect 
not addressed by the above works. Third, we operationalize structure-
based forecasting of network indicators (out-of-sample,2021–2030), 
which extends prior contributions centered on static maps, length 
metrics, or cluster detection (Kali and Reyes, 2007; Cerina et al., 2015; 
Russo et al., 2023). Fourth, by combining dynamic multilayer analysis 
with modularity-based grouping and biclustering, we detect coherent, 
co-moving causal groups of indicators and country–industry nodes, pro-
viding a decision-oriented decomposition of systemic change that com-
plements survey-based measurement frameworks (Amador and Cabral, 
2016). Together, these features position the paper as a bridge between 
topology, temporal causality, and predictive analytics in multilayer 
GVC networks.

Building on the literature, the following contributions are made:

C1 Revealing the dynamic evolution of the global trade network 
structure and its catalysts for change.

C2 Disclosing the cascading impacts of trade interconnectedness 
and disruptions on international trade connections among na-
tions and sectors.

C3 Identifying intervention points for decision-makers, helping con-
tain potential escalations and mitigating the disruption caused 
by crises.

We study multilayer trade networks (country × industry × time), 
which capture cross-industry interdependencies more fully than single-
layer representations. (C2). This approach enables researchers to exam-
ine how changes in one sector or country can ripple through various 
layers of the trade network, providing a more realistic representation of 
the intricate global economic mechanism (C1). The multilayer structure 
also facilitates the identification of hidden patterns and relationships 
that may not be apparent when individual layers in isolation are being 
examined. This enhanced analytical capability is particularly valuable 
for understanding the cascading effects of economic disruptions and 
policy changes across sectors and nations, ultimately leading to more 
informed decision-making in international trade policies and strategies 
(C ).
3
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3. Data and methods

We examined the OECD ICIO multilayer trade network between 
1995 and 2020. We calculated the temporal evolution of structural 
network-, industry- and country-level node indicators on the multilayer 
network during this period. We determined changes in the role of 
sectors and countries over time and then used these to create time 
series to examine forecasts and determine causal networks based on 
cause-and-effect studies between indicators. We grouped the effects 
using clustering and biclustering procedures. Our goal was to determine 
which structural factors, which sectors and which countries are the 
driving forces of the structural changes (see RQ) and how to map the 
temporal dynamics of these changes (see C1-C3).

The research framework of this study is shown in Fig.  1.

3.1. Employed data

The OECD’s ICIO tables (see Fig.  1(a)) map production, consump-
tion, investment, and international trade in goods and services. Eco-
nomic activity and country are split into these tables to show global 
economic linkages in detail. ICIO tables have the following main seg-
ments: intermediate use (Z): goods and services used as inputs in 
other manufacturing, which shows industry and sector interdependen-
cies within and between countries. In our study, we analyzed this 
segment in detail. Final Demand (FD) for goods and services in a 
country, which include household consumption, government spending, 
investment, and net exports, referencing economic goods and service 
consumption. The total worth of an industry or sector’s goods and 
services is output (X), which covers intermediate use and FD. This 
chapter shows the net effect of taxes and subsidies on production and 
comprises indirect taxes such as value-added taxes (VATs) and govern-
ment subsidies to various industries. Value added (VA): an industry or 
sector adding value to its intermediate inputs. The gap between output 
and intermediate use represents the contribution of labor and capital 
to production.

3.1.1. Data collection and preparation
In this study, we used mainly the intermediate use (Z) segment to 

construct a multilayer dynamic network, and examined its structure, 
industry, and country-level changes. The edge list of the dynamic 
multilayer data table, which served as the basis for the analysis, was 
encoded as follows:

Year | From.Sector | From.Country | To.Sector | To.Country | Value
Instead of country and industry codes, we used numbered IDs, and 

the lists of country and sectorial codes are shown in Tables  G.9–G.10. 
An example of a data row is as follows:

1995 | 1 |1 | 1 | 2 | 8.5029
This means that in 1995, from country 1 (Argentina, ARG), the 

total amount of trade to country 2 (Australia, AUS; see Table  G.9), in 
sector 1 (agriculture, hunting and forestry, A01_02) was 8.5029 million 
USD. The employed data structure enabled us to specify a Dynamic 
Multilayer Network (DMN) (see Fig.  1(b)).

To construct the 77 × 45 (countries ×industries) dynamic panel, 
we harmonized ICIO flows to the OECD 45-industry (ISIC Rev.4) ag-
gregate using the official concordances and the back-casted, balanced 
time series that mitigate reclassifications and vintage breaks (Yamano 
et al., 2023). The residual share of missing entries was negligible; 
accordingly, no ad-hoc imputation was applied. To improve robustness, 
we excluded annual bilateral industry flows below USD 1 million, 
since very small cells in multi-country IO tables are disproportion-
ately affected by confidentiality treatment, balancing residuals, and 
rounding noise. This conservative sparsification removes negligible 
aggregate value but materially improves the signal-to-noise ratio for 
temporal forecasting and causality analysis, while preserving temporal 
comparability where OECD flags structural breaks.
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Fig. 1. Research framework.
We extend the dynamic multilayer network with two additional 
ICIO blocks. (i) The value-added (VA) matrix, available as Year ×
(Country × Industry), is modeled as an ‘‘income’’ layer in where each 
country–industry node directs its value added to a synthetic Domestic-
Income node of its own country. (ii) The Final-Demand (FD) tensor 
(Year × (Country × Industry) × Final-User Country) constitutes a ‘‘de-
mand’’ layer whose edges run from producing country–industry nodes 
to final consumer countries. Together with the intermediate-use (Z) 
layer, which yields a three-layer Supply–Demand–Income multiplex 
observed from 1995 to 2020. All network and node indicators are com-
puted for each layer separately, allowing straightforward robustness 
checks of Z-based results against FD and VA perspectives.

3.1.2. Specification of multidimensional network- and node-level datasets
After constructing the DMN, we specified three types of datasets 

for further examination. We calculated structural network properties 
for each year. These results were stored in a 2D data table (see Fig. 
1(c)), where the columns denote the calculated structural properties of 
the network and the rows denoted the given years. Utilizing the con-
structed table, we analyzed the structural changes in the trade network. 
Similarly, a 3D data table was constructed, where the dimensions were 
industries (sectors), (aggregated) node indicators and years 1(e). We 
also created an aggregated data table for countries. The proposed 3D 
dataset allows us to answer the following question: How much does the 
change in the role of different industries depends on other industries 
and on what extently do these characteristics move together? Finally, 
we created a 4D dataset, where the dimensions are country, industry, 
and node property under study, and time (see Fig.  1(f)). In this case, 
we obtained answers to the question of how countries’ trade in different 
sectors changes over time.

3.2. Employed methods

To answer the research question posed (see RQ), it was necessary 
to employ several methods. First, we calculated the time changes and 
forecasts in the network and node indicators of the dynamic multilayer 
trade network (see Fig.  1(d–f) and Section 3.2.3). However, we grouped 
these factors to determine which countries and sectors have similar 
structural indicators (see Sections 3.2.2 and 3.2.4). We then analyzed 
the time series obtained for the network and node indicators using 
Granger causality tests (see Fig.  1(h) and Section 3.2.5). On the basis 
of the results of the causality studies, we mapped the causal networks 
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between both structural and industrial and country-level indicators (see 
Fig.  1(h)). We grouped the relationships by biclustering procedures 
(see Fig.  1(g–h)), while using module search procedures, we identified 
those indicator groups with closer relationships (see Fig.  1(h) and 
Section 3.2.6). Next, we determined the mechanisms of action between 
the indicators (see Fig.  1(i)).

3.2.1. The representation of dynamic multilayer trade network
A dynamic multilayer (trade) network is a triplet, 𝐺(𝑡) = (𝑉 (𝑡), 𝐸(𝑡),

𝑊 (𝑡)), where vertices (𝑉 (𝑡)) are organized into multiple layers (𝐿) in 
time 𝑡 ∈ 𝑇  and each node (vertex) corresponds to an actor (𝐴(𝑡)), 
where the same actor at time 𝑡 can be mapped to nodes in different 
layers. Formally, 𝑉 (𝑡) ⊆ 𝐴(𝑡) × 𝐿. 𝐸(𝑡) ⊆ 𝑉 (𝑡) × 𝑉 (𝑡) is set of undirected 
edges between two vertices at time 𝑡. 𝑊 (𝑡) ∶ 𝐸(𝑡) → R+ represents 
the weights of each edges at time 𝑡. A dynamic edge is represented 
as having the following four members: 𝑒𝑖𝑝,𝑗𝑞(𝑡) = (𝑎𝑖(𝑡), 𝑙𝑝, 𝑎𝑗 (𝑡), 𝑙𝑞); the 
weight of a dynamic edge is 𝑤(𝑒𝑖𝑝,𝑗𝑞(𝑡)) ∈ R+, where, in this study, 
𝑡 ∈ 𝑇 ∶= {1995,… , 2020}, 𝑎𝑖, 𝑎𝑗 ∈ 𝐴 are exporters (𝑖), and importers (𝑗) 
actor (i.e., country), 𝑙𝑖, 𝑙𝑗 ∈ 𝐿 are the layers of exporters and importers, 
respectively; 𝑐𝑖𝑝 = (𝑎𝑖, 𝑙𝑝) ∈ 𝑉  is the node, where 𝑎𝑖 ∈ 𝐴 is the actor in 
layer 𝑙𝑝 ∈ 𝐿. If we fix the year of 𝑡, then we obtain a static multilayer 
trade network.

3.2.2. Explored node-level properties
The employed centrality measures can be calculated for each coun-

try in all industrial layers and can be aggregated at the industrial or 
country level. These indicators jointly offer an extensive perspective 
on the roles and influences of many countries within the multilay-
ered trade network. Utilizing these indicators enables the analysis of 
countries’ interactions in trade, economic robustness, and strategic 
standing within the global trade framework. The time-series analysis 
of these indicators can reveal how the role of countries or sectors has 
evolved over time. Table  B.6 in the Appendix shows the mathematical 
formulation of the employed node-level indicators. Table  1 summarizes 
the economic insights the employed node-level indicators.

Our selection of node-level metrics is driven by economic rel-
evance rather than methodological exhaustiveness. Degree (in/out; 
DCI/DCO) captures partner diversification – the export market access 
and redundancy versus procurement breadth and exposure – while 
strength (out/in; SCO/SCI) measures realized trade intensity and eco-
nomic weight, with SCO–SCI informing external balance and current-
account sustainability. BC quantifies intermediation power over trade 
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Table 1
Node-level indicators with economic interpretations.
 Economic 
dimension

Indicators Economic meaning and interpretation  

 Market Access 
and Trade 
Diversification

Indegree Centrality (DCI)
Outdegree Centrality (DCO)
Degree Centrality (DC)

Measures a country’s trade relationship diversification and market access breadth. 
High DCI indicates strong import demand and supplier dependency, signaling 
domestic market attractiveness but potential vulnerability to supply disruptions. 
High DCO reflects robust export capacity and market penetration across multiple 
destinations, indicating competitive advantage and reduced dependency on single 
markets. Together, they reveal a country’s integration into global supply chains 
and resilience through diversification.

 

 Economic Scale 
and Trade Volume

Instrength Centrality (SCI)
Outstrength Centrality (SCO)

Captures a country’s actual economic weight and trade intensity in global 
markets. High SCI represents substantial import dependency and domestic 
consumption capacity, indicating economic size but potential external 
vulnerability during supply chain disruptions. High SCO demonstrates 
export-oriented economic strength and international competitiveness, contributing 
to GDP growth and foreign exchange earnings. The difference (SCO-SCI) reveals 
trade balance dynamics, crucial for understanding current account sustainability 
and economic stability.

 

 Strategic Trade 
Position and 
Market Control

Betweenness Centrality (BC)
Closeness Centrality (CC)

Measures a country’s strategic importance in global trade routes and market 
accessibility. High BC indicates critical intermediary role, enabling control over 
trade flows and potential for rent extraction through gateway positions. Countries 
with high BC can influence global supply chains and may benefit from trade 
disruptions affecting competitors. High CC ensures efficient access to diverse 
trading partners, reducing transaction costs and enhancing trade opportunities, 
particularly valuable during market volatility and crisis periods.

 

 Economic 
Influence and 
Network Power

Eigenvector Centrality (EC)
PagRank Centrality (PRC)

Evaluates a country’s influence by considering not just connection quantity but 
partner quality and importance. High values indicate trade relationships with 
economically powerful nations, enhancing technological spillovers, knowledge 
transfer, and economic stability through association with stable partners. This is 
particularly crucial for developing countries seeking technology transfer and for 
developed nations maintaining leadership in innovation networks. Such positions 
provide resilience during economic downturns through diversified high-quality 
partnerships.

 

 Hub Economy 
Functions

Authority Centrality (AUT)
Hubness Centrality (HUB)

Measures a country’s role as a trusted trade node in global commerce. High AUT 
signifies reputation as a reliable export destination, often associated with 
high-quality goods, advanced manufacturing, or specialized services, creating 
premium positioning and pricing power. High HUB indicates major exporter 
status to influential importers, suggesting critical supply chain importance and 
potential for economic leverage. Together, they identify countries that serve as 
essential connectors in global trade networks, with significant bargaining power 
and economic influence.

 

 Industrial 
Specialization and 
Risk 
Concentration

Homophily (HOM) Measures the percentage of a country’s trade relationships within the same 
industry, revealing specialization patterns and associated risks. High homophily 
indicates strong industrial specialization and competitive advantage in specific 
sectors, potentially leading to higher productivity and export revenues. However, 
it also signals vulnerability to industry-specific shocks, technological disruptions, 
or demand shifts. Low homophily reflects diversified trade portfolios and risk 
management strategies, providing stability during sector-specific crises but 
potentially sacrificing specialization benefits and economies of scale.

 

routes (gatekeeping, rerouting options, rent extraction), and close-
ness (CC) reflects the average market access costs and speed of ad-
justment, key for resilience and price pass-through. Eigenvector and 
PageRank (EC/PRC) measure embeddedness in ‘‘high-quality’’ neigh-
borhoods – the importance of partners’ partners – linked to demand 
stability, technology spillovers, and sanctions contagion. Hub/authority 
(HUB/AUT) disentangles upstream vs downstream roles in GVCs (ma-
jor suppliers to influential buyers vs trusted destinations), informing 
upgrading, reshoring, and supplier diversification strategies. Finally, 
homophily (HOM) gauges specialization versus diversification in a 
country–industry trade portfolio, balancing productivity gains against 
sector-specific shock vulnerability. Table  1 synthesizes these economic 
interpretations.

3.2.3. Explored network-level properties
In addition to the aggregation of node-level indicators for indus-

tries and the network, it is also possible to calculate network-level 
indicators.

We calculate network centralization by first determining the central-
ity values of each node. Afterward, we calculate the difference between 
the highest centrality value and the centrality values of all the other 
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nodes. Finally, we sum these differences and divide them by the sum of 
the maximum possible differences to obtain the centrality value of the 
network. A formal description of network-level indicators are provided 
in Table  C.7 in Appendix. The Table  2 shows a brief summary of the 
economic insight into the employed network-level indicators.

3.2.4. Similarity measures of layers
For each similarity indicator, the industry-by-industry matrices of a 

given similarity is specified for each year, the average values are also 
determined annually. Table  3 summarizes the economic insight of the 
employed layer similarity measures.

If these similarity metrics increase over time, then it suggests a 
trend toward greater interconnectedness and uniformity across indus-
tries, indicating that countries are aligning their trading strategies and 
reinforcing established partnerships. Conversely, a decreasing trend 
may imply a growing segmentation of the trading landscape, where 
industries become more isolated from each other, possibly driven by 
shifts in economic policy, competitive dynamics, or global market 
changes, leading to potential inefficiencies and disruptions in economic 
integration. The formal descriptions of the similarity indicators are in 
Table  F.8 in Appendix.
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Table 2
Network-level indicators with economic interpretations.
 Economic 
dimension

Indicators Economic meaning and interpretation  

 
Market Integration 
and Connectivity

Density (Dens)
Average Path Length (AVPL)
Multilayer Average Path Length 
(MLAVPL)

Measures the degree of global economic integration and trade efficiency. High 
density indicates tightly interconnected markets with extensive trade 
relationships, fostering collaboration and knowledge spillovers but potentially 
increasing systemic risk. Low AVPL suggests efficient trade routes and reduced 
transaction costs, enabling rapid price arbitrage and market equilibration. 
MLAVPL captures cross-industry connectivity, revealing how efficiently goods and 
services flow between sectors, crucial for understanding supply chain 
optimization and industrial interdependencies during economic shocks.

 

 Network 
Resilience and 
Stability

Transitivity (Trans)
Random Resiliency (RRes)
Systematic Resiliency (SRes)

Evaluates the robustness of global trade networks against disruptions. High 
transitivity indicates clustering among trading partners, providing alternative 
trade routes and reducing vulnerability to single-point failures. This creates 
redundancy that protects against supply chain disruptions. Random resilience 
measures network stability against unexpected failures (natural disasters, political 
instability), while systematic resilience evaluates vulnerability to targeted attacks 
or coordinated disruptions (trade wars, sanctions). Together, they assess the 
global economy’s capacity to maintain trade flows during various crisis scenarios.

 

 Trade 
Concentration and 
Market Power

Indegree Centralization (DZI)
Outdegree Centralization (DZO)
Betweenness Centralization (BZ)
PagRank Centralization (PRZ)

Measures the concentration of trade power and potential market dominance. High 
DZI indicates few countries dominate as major importers, creating dependency 
relationships and potential bottlenecks. High DZO suggests export market 
concentration, where few countries control global supply, increasing market 
power but creating vulnerability points. High BZ reveals concentrated control 
over trade routes by specific nations, enabling strategic leverage and potential for 
market manipulation. High PRZ indicates overall economic influence 
concentration, suggesting unequal global trade relationships and potential for 
economic coercion or beneficial spillovers from dominant economies.

 

 Economic 
Efficiency and 
Performance

Average Local Efficiency (ALE)
Global Efficiency (GLE)
Reach Club Coefficient (RCC)

Assesses the economic efficiency of trade networks and elite country interactions. 
High ALE indicates efficient regional trade distribution, suggesting well-developed 
local supply chains and reduced logistics costs. High GLE demonstrates that 
goods and services flow efficiently across the entire network through few 
intermediaries, minimizing transaction costs and enabling rapid market responses. 
High RCC shows that economically powerful countries trade intensively among 
themselves, creating an exclusive ‘‘rich club’’ that may drive global economic 
trends but potentially excludes smaller economies from premium trade 
opportunities and technology transfer.

 

 Market Structure 
and Competition

Assortativity (Assort)
Modularity (Mod)
Multilayer Global Clustering 
Coefficient (MlGlClu)

Reveals the competitive structure and fragmentation of global markets. Positive 
assortativity indicates that countries with similar trade capacities preferentially 
trade together, suggesting stable market tiers but potential for reduced 
competition and innovation. High modularity reveals distinct trading blocs or 
communities with dense internal trade but sparse inter-community connections, 
indicating regional integration but global fragmentation that may impede 
efficiency and increase trade barriers. High MlGlClu shows strong cross-industry 
clustering, facilitating industrial cooperation and technology spillovers but 
potentially creating sector-specific vulnerabilities during industry-wide disruptions.

 

 Trade Balance and 
Asymmetries

Mean of Vertex Asymmetries 
(MVA)
Closeness Centralication (CZ)

Captures trade imbalances and accessibility inequalities in the global economy. 
High MVA indicates widespread trade imbalances across countries, suggesting 
structural economic asymmetries that may lead to current account sustainability 
issues, currency pressures, and potential for trade disputes. This reflects 
underlying competitiveness differences and economic development gaps. High CZ 
shows unequal access to global markets, where few countries enjoy superior 
connectivity while others face higher trade costs and limited market access, 
potentially perpetuating economic inequalities and limiting development 
opportunities for peripheral economies.

 

3.2.5. Employed forecasting methods and causality measures
Between 2021 and 2030, various network indicators were predicted 

via the Autoregressive Integrated Moving Average (ARIMA) model. 
The forecast obviously cannot account for the aftermath of COVID-
19, the consequences of the Russia–Ukraine conflict, or the effects 
of the trade wars of the Trump administration. However, we obtain 
an important picture of what would have happened had these effects 
did not occur. The Granger causality and instantaneous causality are 
employed to determine the effect mechanism of structural and network-
level indicators. Table  4 summarizes the economic insights of the 
applied methods.

To validate classical Granger causality tests three Bayesian ap-
proaches are also applied, such as BVAR with Minnesota Priors (Ni 
and Sun, 2003), MCMC analysis Bayesian Estimation [jackman2000
estimation] and BFA (Oravecz and Vandekerckhove, 2024).
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These four approaches form a comprehensive methodological frame-
work that addresses different aspects of Granger causality analysis 
while providing mutual validation. The classical Vector Autoregressive 
(VAR) method establishes the foundational statistical benchmark with 
its well-understood asymptotic properties, serving as the reference 
point for comparison. The BVAR approach enhances estimation pre-
cision through structured priors, particularly valuable when dealing 
with limited sample sizes or high-dimensional systems where classical 
methods may suffer from overfitting. The MCMC Bayesian method pro-
vides the most comprehensive uncertainty quantification by generating 
a full posterior distributions, allowing for nuanced probabilistic state-
ments about causality relationships and their associated uncertainty. 
Finally, the BFA offers direct model comparison capabilities, provid-
ing interpretable evidence measures for competing hypotheses about 
causal relationships. We considered a relationship to be Granger causal 
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Table 3
Layer similarity measures with economic interpretations.
 Economic 
dimension

Indicators Economic meaning and interpretation  

 Cross-Industry 
Market Structure 
and Integration

Node Similarity (NS)
Edge Similarity (ES)

Measures the degree of cross-sectoral market integration and trading partner 
consistency. High NS indicates that countries maintain similar trading partners 
across different industries, suggesting integrated business relationships, economies 
of scope, and diversified industrial strategies. This reflects mature economic 
relationships where countries develop comprehensive trade partnerships spanning 
multiple sectors. High ES reveals consistent trade flows and partnership intensities 
across industries, indicating stable supply chain relationships and reduced 
transaction costs through established business networks. Together, they signal 
economic integration depth and partnership stability across industrial boundaries.

 

 Industrial 
Diversification 
and Risk 
Management

Pearson Correlation of Degree 
Centralities (PD)
Shortest Path Distance (SP)

Evaluates countries’ diversification strategies and vulnerability to sector-specific 
shocks. High PD suggests that countries maintain similar trade positions across 
different industries, indicating either successful diversification strategies or 
concerning over-specialization in similar market niches. This can provide stability 
through balanced industrial portfolios but may also indicate lack of comparative 
advantage specialization. Low SP between industries indicates efficient 
cross-sectoral trade connections, enabling rapid resource reallocation and 
industrial adaptation during economic transitions. This flexibility is crucial for 
countries adjusting to technological changes or shifting global demand patterns.

 

 Economic 
Coherence and 
Strategic 
Alignment

Combined Pattern Analysis When similarity measures move together over time, it indicates increasing 
economic coherence where countries align their trading strategies across 
industries, suggesting either successful economic integration policies or 
concerning loss of competitive differentiation. Increasing similarity patterns may 
reflect beneficial standardization and efficiency gains through unified trade 
policies, but could also signal reduced innovation and competitive dynamics. 
Conversely, decreasing similarity trends may indicate beneficial specialization and 
comparative advantage development, but could also suggest concerning market 
fragmentation and reduced economic cooperation, potentially leading to trade 
inefficiencies and increased vulnerability to external shocks.

 

Table 4
Comparison of forecasting methods and causality measures: economic interpretation.
 Method Economic purpose Economic interpretation Policy implications Limitations  
 ARIMA 
Forecasting

Predict future trade 
network structures 
under baseline 
conditions

Extrapolates historical trends 
to identify what would 
happen without external 
shocks (COVID-19, trade wars, 
geopolitical conflicts). 
Provides counterfactual 
scenarios for policy 
evaluation.

Enables policymakers to 
distinguish between natural 
economic evolution and 
crisis-induced changes. Helps 
identify deviations from 
expected trajectories.

Cannot incorporate structural 
breaks or unprecedented 
events

 

 Granger 
Causality 
validated by 
Bayesian 
approaches

Identify temporal 
precedence 
relationships between 
countries and industries 
in trade dynamics

Reveals which 
countries/industries act as 
‘‘early indicators’’ of global 
trade changes. Shows cascade 
mechanisms where changes in 
one actor predict changes in 
others with specific time lags.

Critical for early warning 
systems. Helps identify which 
countries to monitor for 
predicting broader trade 
disruptions. Informs strategic 
timing of interventions.

Assumes linear relationships; 
sensitive to lag selection; 
correlation ≠ true causation

 

 Instantaneous 
Causality

Capture simultaneous 
co-movements in trade 
patterns during 
economic shocks

Identifies countries and 
industries that respond 
synchronously to global 
economic events. Reveals 
structural interdependencies 
and shared vulnerabilities in 
real-time.

Essential for coordinated 
policy responses during crises. 
Helps identify countries that 
need simultaneous support or 
face similar risks during 
global disruptions.

Cannot establish temporal 
direction of influence; may 
capture spurious correlations

 

between two time series at a given lag only if a causal relationship 
could be demonstrated between the time series by all methods.

The setting of ARIMA and causality analysis is detailed in Appendix 
D. To analyze the relationships and precedence relations between 
time series of node properties, layer with respect to similarity values 
and network properties, we specified a causality graph to depict the 
relationships among properties, where a node represents a given prop-
erty, and an edge exists between nodes if causality relations between 
properties exist. The lags were noted, but we did not use them as 
weights. Therefore, we obtained a directed unweighted causality graph 
for Granger causality and an undirected instantaneous causality graph.
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3.2.6. Employed clustering and biclustering methods
By clustering the resulting correlation and causal graphs with

community-based modularity detection, we determined modules in 
which communities provide the set of indicators where there are denser 
causal relationships between nodes than there are between separate 
modules. We also used a biclustering method to cluster edges between 
nodes to identify where denser causal relationships exist.

Clustering partitions nodes into communities with denser— than-
expected internal ties, whereas biclustering simultaneously groups 
nodes and the edges between them to uncover edge-dense subma-
trices. In our directed causality network, community detection (Lei-
den/Louvain/Infomap) reveals sets of indicators or country— industry 
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Table 5
Comparison of clustering and biclustering methods: Economic interpretation.
 Method Economic purpose Economic interpretation What it cannot capture alone  
 Modularity-based 
Community Detection

Identify trade communities and 
economic blocs based on dense 
internal connections

Reveals natural economic 
partnerships and regional trade 
clusters. High modularity 
indicates fragmented global trade; 
low modularity suggests 
integrated global economy.

Cannot identify temporal 
dynamics or causal 
mechanisms within 
communities. Static view of 
trade relationships.

 

 Generalized 
Network-based 
Dimensionality Analysis 
(GNDA)

Automatically discover industrial 
groups with similar temporal 
trade patterns without 
pre-specifying cluster numbers

Groups industries by their 
adaptive capacity and resilience 
patterns. Identifies which sectors 
move together during economic 
cycles and crises.

Cannot reveal why industries 
cluster together or predict 
cross-cluster influences.

 

 iterative Binary 
Biclustering of Gene 
sets (iBBiG)

Simultaneously cluster 
countries/industries AND their 
causal relationships to identify 
dense interaction patterns

Uncovers hidden economic 
interdependencies where specific 
country–industry combinations 
systematically influence others. 
Reveals transmission mechanisms 
of economic shocks.

Cannot determine community 
structure or long-term 
temporal trends. Focuses only 
on causal density.

 

l-

 

* 
nodes with concentrated interrelations; iBBiG biclustering comple-
ments (Pontes et al., 2015) this by isolating cohesive sets of causal 
links (origin–target pairs) that co-move and co-predict with similar 
lags (Castanho et al., 2024). Using both methods allows us identify who 
forms communities and which specific causal links transmit shocks.

The applied clustering and biclustering methods are briefly intro-
duced in Table  5

By combining (Bayesian-validated) Granger and instantaneous causa
ity with biclustering, we identify edge-dense causal submatrices — 
i.e., groups of causal relations that co-move and co-predict with co-
herent lags. Unlike community detection, which clusters nodes, our 
biclustering clusters the causal links themselves; this exposes concrete 
propagation channels that static centralities or GVC participation in-
dices cannot be revealed. The joint method tells policymakers not 
only who is important, but which specific cross-industry/cross-country 
relations move together and in what temporal order, enabling targeted 
and time-staged interventions on the small set of links that transmit 
shocks fastest.

The technical details of community detection and biclustering are 
in Appendix  E.

4. Results

4.1. Temporal analysis of the structure of multilayer dynamic trade net-
works

Fig.  2 shows the temporal changes in the multilayer network prop-
erties. We project the time series of structural indicators utilizing 
the ARIMA model from 2021 to 2030, and we also establish a 95% 
confidence interval for prediction. To ensure the prediction, we also 
calculated the forecasts with Bayesian ARIMA model (see Fig.  A.10 in 
the Appendix). The results of the classical and Bayesian approaches 
differ only minimally. To layer-specific robustness checks corroborate 
our main findings, we recomputed the core indicators on the FD- 
and VA-layers shows to check both demand-driven flows and value-
added allocation exhibit the same long-run rise in centralization and 
the same ebb-and-flow of modular fragmentation identified in the Z-
layer. However, in this study, we only compare the sector-specific Value 
Added (VA) and country-specific FD values with the centrality values 
calculated on the Z-layers.

Although the forecasts do not show what the impact of, for example, 
Trump’s protective tariffs or the prolongation of the Russia–Ukraine 
conflict will be, causality analysis can show which structural indicators 
move at the same time and which ones exhibit a time lag. The causal 
relationship among the network properties are shown in Fig.  3. Fig. 
3(a–b) shows heatmaps and biclusters of Granger (a) and instantaneous 
(b) causalities according to the network features. The darker reddish 
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cells in Fig.  3(a) indicate longer lags; however, in the context of 
instantaneous causality, there is no temporal lag, with only significant 
cells depicted in dark red. In both causalities, two biclusters can be 
identified, with only the first being significant for both rows and 
columns. Fig.  3(c) illustrates a directed Granger causality graph with 
a tree layout. On the basis of this arrangement and clusterings, we 
create a block diagram, which is illustrated in Fig.  3(e). Fig.  3(d) depicts 
an undirected graph with instantaneous causality across properties. 
The color of the nodes signifies the community identified by Leiden’s 
community-based modularity detection technique. The dimensions of 
the nodes correspond to the DC of each node, with dark red edges 
representing members of the first bicluster (significant) and dark green 
edges denoting members of the second bicluster (nonsignificant). In 
accordance with Granger causality and the specified tree architecture, 
three levels can be identified to minimize feedback, as shown in Fig. 
3(e).

Fig.  3 presents the comprehensive causality analysis framework for 
multilayer trade network structural indicators from 1995–2020. To de-
termine the effect mechanism of each structural indicator, we initially 
establish Granger and instantaneous causality (see Fig.  3(a–b)). We 
cluster the structural features by Leiden’s modularity-based community 
detection (see Fig.  3(c–d)) and by biclustering the relationships (see 
Fig.  3(a–d)), and finally, we subsequently organize the procedures to 
minimize the level of feedback among structural elements (see Fig. 
3(e)). Ultimately, we obtain a mechanism graph illustrating both the 
comovements (i.e., ∼instantaneous correlations) and Granger causal 
linkages (i.e.,∼ precedence) among structural components. The weights 
in Fig.  3(e) inscribed on the arrows denote the average duration of lags 
among the structural variables.

Specifically, Fig.  3(a) shows Granger causality relationships with lag 
structure, where darker red cells indicate longer temporal lags (0=no 
significance, 1–5=year lags) between structural indicators. Key abbre-
viations: DZI/DZO—measuring trade concentration, BZ—intermediary 
control, CZ—market accessibility, PRZ—influence concentration, AVPL—
trade route efficiency, ALE/GLE—regional/global trade efficiency, Trans
(Transitivity—clustering tendency), RRes/SRes—network robustness, 
MVA—trade balance inequalities, RCC—elite country interactions, Mod.
(Various modularity measures using different algorithms—community 
structure), Mean.NS/ES/PD/SP—cross-industry integration patterns. 
Fig.  3(b) displays instantaneous causality (simultaneous co-movements) 
where dark red dots indicate significant relationships. Fig.  3(c) and 
(d) present clustered causality graphs with community detection re-
sults, where node colors represent different communities identified 
by Leiden’s modularity-based algorithm, and edge colors distinguish 
significant (dark red) versus nonsignificant (dark green) biclusters. 
Fig.  3(e) synthesizes the temporal mechanism into a three-tier hier-
archical structure: Tier 1 (robustness indicators: Trans, SRes, RCC, 
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Fig. 2. Network properties in time (forecast with ARIMA, 95% confidence interval).
MlGlClu, MLAVPL, Mod.Louvain, Mean.NS) responds first to economic 
disruptions; Tier 2 (concentration indicators: DZI, CZ, AVPL, RRes, 
MVA, Mean.ES/PD/SP) follows with 1.35-year average lag; Tier 3 
(structural integration indicators: Assortativity, DZO, BZ, PRZ, Dens, 
ALE, GLE, Mod.RW.W (Modularity random walk (weighted)/Infomap/
Leiden, Mean.SP)) responds last with 3.31-year average lag. Bidi-
rectional arrows indicate feedback effects with 1.26-year reverse lag 
between middle tiers.

4.2. Industrial causality analysis and temporal pattern identification

Fig.  4 shows the main centrality values of the top ten industries. 
The top 10 industries, in this case, are the 10 largest industries with a 
given centrality. Fig.  4(a) shows the change in export volume, which 
is expressed in terms of SCO centrality. The change in trade balance, 
which is the difference between export and import volumes, and ex-
pressed in terms of centralities, is SCO-SCI and shown in Fig.  4(c). 
Additional relative centrality values for the top 10 industries are shown 
in Fig.  4(b,d–g). The relative centrality for each industry is calculated 
by dividing the industry centrality value by that of all industries. To 
validate the results we also calculated the relative sectorial added 
values (see Fig.  4(h)).

To determine the typical industrial trends, we cluster the node-
level indicators by employing the GNDA approach. Fig.  5 shows the 
temporal patterns of the node-level indicators aggregated by industry. 
The employed GNDA identifies the number of temporal characteristics 
(i.e., cluster centers). The temporal patterns of cluster centers shows 
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how the aggregate characteristics of the industries in a given group 
have changed on average. All industries that belong to such an aggre-
gate (latent) characteristic are listed in the legend. To ensure that the 
forecasts the Bayesian version of ARIMA models are also shown in Fig. 
A.11 in Appendix. The results of the classical and Bayesian approaches 
differ only minimally.

We analyze six indicators. First, DCO illustrates the temporal pro-
gression of the quantity of export partners, indicating the average 
number of buyers a country possesses within an industry (see Fig.  5(a)). 
The second indicator (see Fig.  5(b)) examined is homophily, which 
shows what percentages of countries’ import and export relationships 
in a given industry originate from that industry. This indicator charac-
terizes the structure of the industry. The development of homophily 
over time can show how much the industry is integrated into the 
international market. If the indicator increases, then it may indicate 
that the trade relationships between the actors in the given industry 
are strengthening, while if it decreases, then the opposite situation 
may occur. The third indicator analyzed is modularity (see Fig.  5(c)). 
Modularity demonstrates the significant separation of clusters, or mod-
ules (communities), inside a network structure. Assessing modularity 
helps determine the degree to which specific countries create communi-
ties within particular industries. The temporal variation in modularity 
enables the observation of how linkages among industry actors have 
evolved into communities. Fig.  5 (e–g) illustrate the time evolution of 
most important industrial centrality indicators, such as EC (e), PRC (f), 
and BC (g). While EC and PRC demonstrate the role of industries inside 
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Fig. 3. Causalities between network properties with detailed methodological framework and indicator explanations.
the network, BC illustrates their intermediary function. To validate the 
change in centrality values the added values are also calculated (h).

The final results of the causality analysis are shown in Fig.  6. This 
calculation follows the steps of causality analysis on network-level 
indicators; see Fig.  3. First, the Granger and instantaneous causalities 
are calculated. Causality graphs are specified and aligned as a tree 
layout. Each level of trees is grouped into a block, and the average 
time lag between the pair of elements from a two distinct blocks is 
calculated.

4.3. Country-level analysis

Fig.  7 shows the top ten countries with the greatest centrality 
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values. The SCO in Fig.  7(a) actually shows the volume of exports 
considering the ten largest exporters, whereas Fig.  7(c) shows the 
trade balance SCO-SCI=export-import in time. Fig.  7(b, d–g) shows the 
ten most important countries with the largest relative PageRank, hub, 
authority, betweenness and eigenvector centrality values, where the 
relative centrality value of a given country is calculated by dividing 
the summed centrality values of all industries of that country by the 
sum of the centrality values of all industries of all countries. In this 
way, the sum of the relative centrality values of the top ten countries 
with the greatest values indicate their role compared to that of all 
other countries. The change in values over time gives the change in 
the relative position of the top ten countries. To control the changes in 
centralities we calculate the changes in FDs (see Fig.  7(h)).
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Fig. 4. Centrality values of the top 10 industries.
Fig.  8 shows the impact mechanism of changes in all trade activi-
ties (import+export with Schwarz Criterion (SC)) measured. The map 
shows OECD countries. The size of the nodes is proportional to the 
total trade activity (imports + exports), which is measured via strength 
centrality. The colors of the nodes indicate the causal group into which 
each country falls. The first causal relationship is for countries whose 
trade changes first. The last causal relationship is for countries whose 
trade changes last. By biclustering the causal relations, one significant 
group of relationships can be identified, which are indicated by the 
colors of the arrows.

Fig.  8 maps the temporal propagation of trade volume, which 
changes across 77 countries from 1995–2020, revealing systematic pat-
terns in how global trade disruptions cascade through different national 
economies. Fig.  8(a) presents the clustered Granger causality network 
where nodes represent country size proportionally to total trade activity 
(imports + exports measured by strength centrality), and node colors 
indicate causal group membership based on response timing. Dark red 
arrows represent significant causal relationships (bicluster 1) where 
changes in one country’s trade volume predict changes in another 
with specific time lags, while light green arrows show nonsignificant 
relationships (bicluster 2). Fig.  8(b) synthesizes the effect mechanism 
into four hierarchical tiers with distinct economic characteristics. Fig.  8 
shows that the change in trade occurs simultaneously in most countries. 
Such changes can be divided into four consecutive causal groups in 
time. Trade changes first appear in Côte d’Ivoire, Estonia, United 
Kingdom, Hong Kong, China, Croatia, Iceland, Korea, New Zealand, 
Portugal, Turkey. Afterward, at average, in 2.25 years, the larger set 
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of trade countries is Argentina, Belgium, Bangladesh, Bulgaria, Be-
larus, Brunei Darussalam, Switzerland, China (People’s Republic of), 
Cameroon, Colombia, Costa Rica, Czechia, Egypt, Finland, Indonesia, 
Ireland, Israel, Japan, Kazakhstan, Cambodia, Lao (People’s Democratic 
Republic), Lithuania, Morocco, Malta, Myanmar, Malaysia, Nigeria, 
Pakistan, Peru, Philippines, Romania, Russian Federation, Saudi Arabia, 
Senegal, Slovakia, Vietnam, rest of the world. A change in a larger 
group of countries can also be observed, on average, 2.94 years later, 
such as Australia, Austria, Brazil, Canada, Chile, Cyprus, Germany, 
Denmark, Spain, France, Greece, Hungary, India, Italy, Jordan, Lux-
embourg, Latvia, Mexico, Netherlands, Norway, Poland, Singapore, 
Slovenia, Thailand, Tunisia, Chinese Taipei, United States, South Africa. 
A backlash can also be observed between the two middle groups with 
an average delay of 1.92 years. The last group includes a total of 2 
countries, namely Sweden, Ukraine, which are those countries where 
export/import changes in trade appear the latest in the considered 
period.

5. Discussion

5.1. Structural changes in the trade network

Concentration and market power. The steady rise of importer and 
exporter centralization and of intermediation power (degree and be-
tweenness centralizations; PageRank centralization; ‘‘rich-club’’ inten-
sity) signals a persistent concentration of global trade in a relatively 
small set of hub economies. Economically, this implies growing bar-
gaining power for core countries and lead firms, stronger price-setting 
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Fig. 5. Average clustered industrial node-level properties.
Fig. 6. Industrial effect mechanisms based on causality and cluster analysis with economic interpretation of sectoral groupings.
capacity along GVCs, and a greater potential for policy shocks in a 
few jurisdictions to transmit widely. The timing is consistent with 
welldocumented structural drivers: the post-1995 offshoring boom, the 
2001 World Trade Organization (WTO) accession of China, and the 
scaling of platform-type supply chains. Nonnetwork evidence aligns 
with this pattern: the ‘‘export superstars’’ phenomenon indicates a 
concentration of exports in a small share of firms (Freund and Pierola, 
2015; Rowley, 2024), while the ‘‘Great Convergence’’ describes how 
Information and Communications Technology (ICT) lowered coordina-
tion costs and enabled hub-and-spoke GVCs led by a few economies and 
firms (Baldwin, 2016). China’s increasing systemic centrality in Fig.  2 
is consistent with macro evidence on the ‘‘China shock’’ and its broad 
real-economy repercussions (Autor et al., 2016; Dorn and Levell, 2024).
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Efficiency, trade costs, and chain architecture. The decline in aver-
age (multilayer) path lengths and the rise in local and global efficiency 
indicate economically shorter and more reliable trade routes, consistent 
with falling trade costs (logistics, coordination, and information) and 
the maturation of production sharing. This is precisely what one would 
expect from containerization, ICT diffusion, and the codification of 
tasks that enabled fine slicing of value chains (Hummels et al., 2001; 
Ren, 2024; Baldwin, 2016). The small but persistent increase in den-
sity further reflects broadening market access and deeper integration. 
Microevidence that ‘‘time is trade cost’’ (e.g., delays at the border and 
in shipping depress trade disproportionately) provides an independent, 
nonnetwork rationale for the shorter effective distances we observe (Liu 
and Yue, 2013). In economic terms, Fig.  2 suggests that, up to the 
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Fig. 7. Centrality values of the top 10 countries.
mid-2010s, firms optimized to minimize coordination and leadtime risk 
while leveraging larger supplier networks.

Regionalization vs. global integration. Modularity and assortativ-
ity patterns capture the tension between regionalization and global 
integration. Assortativity trending more negative is consistent with 
a hub-and-spoke, core–periphery architecture: highly connected hubs 
transact extensively with less connected periphery nodes — a hall-
mark of lead-firm GVCs. Modularity dynamics point to an ebb and 
flow between global integration and the re-emergence of regional 
blocs. The post-2008 ‘‘slowbalization’’ debate emphasized both cyclical 
(demand, finance) and structural (policy, technology) drivers of a 
slower trade elasticity (Constantinescu et al., 2020). Fig.  2 is consistent 
with a period of re-regionalization around the mid-to-late 2010s as 
trade policy frictions rose (Evenett, 2019), even as the underlying 
technology and logistics fundamentals continued to support efficient 
cross-border production. Put differently, the economic forces pushing 
toward integration (falling trade costs) and the policy forces push-
ing toward fragmentation (tariffs, screening, compliance divergence) 
coexisted during this period.

Resilience and systemic risk. Improvement in random failure re-
silience together with the more modest gains (or plateaus) in targeted-
attack resilience imply that while the trade system became better at 
absorbing idiosyncratic disturbances, it remained vulnerable to shocks 
concentrated on hubs (e.g., a targeted tariff or a chokepoint disruption). 
This is an economic tradeoff familiar in the supply chain management: 
efficiency gains from scale and centralization raise exposure to hub-
specific risks. The literature on supply chain risk similarly warns that 
the very forces that made GVCs efficient – supplier consolidation, just-
in-time inventories, and hub concentration – also magnifies systemic 
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vulnerability to policy and logistical shocks (Baldwin and Freeman, 
2022). The patterns in Fig.  2 therefore square with an economic inter-
pretation in which firms optimized for cost and speed during ‘‘normal 
times’’, while policy shocks and crises reveal the nonlinear losses 
associated with central-node disruptions.

The counterfactual outlook lacks recent shocks. The ARIMA-based 
projections (2021–2030) are a baseline, ‘‘no-new-shock’’ counterfac-
tual. Economically, the forecast of continued efficiency gains (shorter 
effective distances), slight additional densification, and mild declines 
in modular segmentation suggests that, the absence of new protec-
tionist measures or large geopolitical events, the gravitational pull of 
technology, scale, and learned coordination would have continued to 
deepen integration and diffuse influence marginally away from the very 
top players. This counterfactual complements non-network assessments 
that attribute much of the post-2016 deceleration to policy and uncer-
tainty rather than to a reversal of the technological and organizational 
underpinnings of GVCs (Constantinescu et al., 2020). In other words, 
Fig.  2’s forecasts imply that the observed fragmentation of recent years 
is not inevitable; it is contingent on policy and shock realizations rather 
than being dictated by economic fundamentals alone (Milberg et al., 
2024).

As shown in Fig.  3 most structural changes occur instantaneously 
and collectively, with causal mechanism analysis organizing these re-
lationships into three consecutive hierarchical groups. These findings 
align with Baldwin and Lopez-Gonzalez (2015)’s observation of ‘‘deep 
integration’’ in global value chains, where interconnected production 
networks create simultaneous adjustment patterns across multiple eco-
nomic dimensions. The first tier comprises structural indicators reflect-
ing network robustness – transitivity, global clustering coefficients, and 
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Fig. 8. Country-level causality effect mechanism of strength centrality (total trade volume) with geographic and economic development patterns.
 

systematic resilience measures – which change earliest in response 
to economic disruptions. This pattern mirrors Autor et al. (2016)’s 
findings on the ‘‘China shock’’, where initial trade policy changes 
first affected the structural integrity of manufacturing networks before 
cascading to other sectors. From an economic policy perspective, this 
suggests that policymakers should monitor network robustness indica-
tors as early warning signals for broader structural changes, as these 
measures capture the fundamental stability of trade relationships before 
concentration or community patterns begin to shift.

The second tier encompasses centralization and similarity indica-
tors, reflecting changes in market concentration and trading partner 
alignment patterns, which respond with an average lag of 1.35 years af-
ter robustness changes. This delayed response supports Melitz (2003)‘s 
heterogeneous firm trade model, where aggregate trade patterns emerge
from firm-level adjustments that take time to manifest in network-
wide concentration measures. The third tier includes community struc-
ture indicators (modularity and assortativity) with an average lag 
of 3.31 years, representing the longest-term structural adjustments 
in trading bloc formation and partnership preferences. This tempo-
ral sequencing contradicts the immediate adjustment assumptions of 
standard trade models (Krugman et al., 1980; Mansouri, 2022) but 
supports more recent dynamic trade literature emphasizing gradual 
adjustment processes (Eaton et al., 2016; Atsebi et al., 2024). Bidirec-
tional causality between the second and third tiers (with a 1.26-year 
reverse lag) indicates that community structure changes can also influ-
ence concentration patterns, suggesting that trade bloc formation can 
reshape market power dynamics—a finding consistent with Hofmann 
et al. (2019)’s analysis of preferential trade agreements’ effects on 
multilateral trade patterns. These results provide crucial guidance for 
crisis management: robust early intervention during the first phase 
can prevent cascading effects, whereas delayed responses may require 
addressing all three structural dimensions simultaneously at much 
higher economic and political costs.
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5.2. Industrial changes and restructuring

The centrality values shown in Fig.  4 reveal remarkable structural 
stability in global trade hierarchies despite major economic disruptions, 
suggesting that fundamental comparative advantages and industrial 
specialization patterns exhibit strong persistence over time. The dom-
inance of wholesale and retail trade (G), financial services (K), and 
basic metals (C24) in export volumes and centrality measures aligns 
with Hausmann and Hidalgo (2011)’s economic complexity theory, 
which predicts that countries and industries with established capa-
bilities maintain their positions in global value networks. This sta-
bility contradicts the ‘‘creative destruction’’ hypothesis of Schumpeter 
(2013), which would predict more dramatic industrial reshuffling fol-
lowing major crises such as the 2008 financial crisis. From a trade 
theory perspective, these findings support the Heckscher–Ohlin model’s 
prediction of persistent specialization patterns based on factor endow-
ments (Leamer et al., 1995), while challenging newer models that 
emphasize rapid industrial transformation through technology adop-
tion (Grossman and Helpman, 1993; Helpman, 2025). The absence of 
significant restructuring in PageRank, betweenness, and eigenvector 
centralities indicates that core industries maintain their intermediary 
roles and influence positions within global supply chains, suggesting 
that established trade relationships create substantial switching costs 
and network externalities that preserve existing hierarchies even during 
periods of economic turbulence. As shown in Fig.  4, industries with 
high centrality measures (such as agriculture financial services) also 
tend to exhibit high and growing value-added contributions. Never-
theless, the top 10 value added industries incorporate professional 
scientific and technical activities (M), public administration and de-
fense (O), and human health and social works (Q) which are also 
selected in the calculation of the top 10 eigenvector-centralities. This 
correlation suggests that an industry’s position in the trade network is 
often reflective of its economic importance in terms of value creation, 
which is further strengthened by similar industry characteristics in 
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terms of both centrality and added value (compare Fig.  4(b, g) with 
Fig.  4(h)), as well as the high average correlation between VAs and the 
employed out-strength (𝜌 = 0.96) centrality values.

However, the observed shifts in hub and authority centralities reveal 
more nuanced adjustments in industrial leadership and trust relation-
ships within the global economy. Financial and insurance sector’s 
declining hub centrality after 2011 – overtaken by basic materials and 
construction – reflects a fundamental reorientation of global economic 
priorities following the financial crisis, consistent with Reinhart and 
Rogoff (2009)’s and Kose et al. (2022)’s documentations of postcrisis 
shifts toward tangible asset sectors and infrastructure investment. This 
transition aligns with Rodrik (2016)’s argument about ‘‘premature 
deindustrialization’’, where developing economies increasingly priori-
tize manufacturing and construction over financial services. The rise 
of basic materials in authority centrality suggests growing recogni-
tion of resource-rich countries and commodity-production industries 
as reliable trading partners, supporting Venables (2016)’s analysis of 
the ‘‘resource curse’’ reversal in countries that successfully leveraged 
commodity booms for broader economic development. These changes 
in authority reflect evolving trust patterns in international trade, where 
countries increasingly view suppliers of essential materials as more 
dependable than financial intermediaries—a shift that has profound 
implications for supply chain resilience and strategic economic part-
nerships. The construction sector’s emergence in authority centrality 
likely reflects the global infrastructure boom, particularly in emerging 
markets, consistent with the Group (2017)’s emphasis on infrastructure 
investment as a driver of sustainable development (Knack et al., 2025).

According to Fig.  5, both the network indicators and VAs of in-
dustries can be clearly classified into 2–3 distinguishable clusters, 
which are similarly separated for most centrality and the VA mea-
sures, revealing fundamental economic stratification patterns that align 
with established theories of industrial organization and sectoral het-
erogeneity. Most of the industrial node-level centrality measures are 
affected by the 2008 financial crisis, but the extent of this impact varies 
significantly across clusters, reflecting differential economic resilience 
capacities that correspond to varying degrees of market concentration, 
capital intensity, and global integration. The DCO and EC centralities 
characterizing the multiplicity of export partners show very similar 
patterns, and in the case of both centralities, two main characteristics 
whose trajectory after the 2008 financial crisis is completely different 
can be identified, demonstrating that these sector groupings exhibit 
distinct adaptive capacities in the wake of global disruptions. The 
results are also validated by clustering according to VA. We can see 
a similar sectoral breakdown, where the trends are the same as those 
seen with DCO and EC centralities. This finding is consistent with Car-
valho (2014) sectoral shock propagation theory, which suggests that 
industries with different network positions respond heterogeneously to 
aggregate shocks. Industries in the first cluster, such as agriculture, food 
products, and IT, demonstrate resilience and continue strengthening 
postcrisis, albeit at a slower pace, which economically reflects their 
essential nature and lower cyclical sensitivity, supporting Acemoglu 
et al. (2012a) reported that upstream sectors and those providing basic 
necessities tends to be less volatile during economic downturns. These 
sectors are characterized by stronger integration and robust export part-
nerships, allowing them to sustain growth despite adverse conditions, 
which are consistent with Rauch and Watson (2003) and Roner and 
Tomasi (2025) evidence that differentiated product industries maintain 
more stable trade relationships. In contrast, industries in the second 
cluster, including mining, construction, and education, exhibit stagna-
tion, potentially due to their higher cyclical sensitivity and dependence 
on domestic demand cycles, which aligns with Davis and Haltiwanger 
(2001) and Goswami and Paul (2025) studies of procyclical employ-
ment patterns in construction and resource extraction sectors. The 
forecasts suggest expansion in export partnerships across both clus-
ters, hinting at gradual recovery and broader network involvement, 
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reflecting the economic principle of market adjustment through di-
versification strategies as described by Melitz (2003). Homophily and 
modularity patterns further underscore the structural economic differ-
ences between these industry clusters, with lower homophily values in 
the second cluster indicating greater cross-sectoral dependencies, con-
sistent with input–output analysis showing that certain industries serve 
as critical intermediate suppliers (Leontief, 1986; De Mesnard, 2024). 
However, the predictions suggest convergence in homophily indica-
tors between the two clusters, potentially reflecting ongoing structural 
transformation toward more integrated global production networks, 
supporting Baldwin (2016)’s concept of the ‘‘great convergence’’ in 
industrial structures. The significant decrease in modularity observed 
in the first cluster, while the concentration stagnates in the other clus-
ters, economically suggests that leading industries are becoming more 
integrated into global markets while others remain relatively isolated, 
consistent with Autor et al. (2016) findings on the heterogeneous im-
pacts of globalization across sectors. Decreasing betweenness centrality 
in the first cluster suggests that the intermediary role of these industries 
is weakening, while that of the second cluster, which includes several 
transport industries, is strengthening, reflecting a fundamental shift in 
the global division of labor where traditional manufacturing centers are 
being replaced by logistics and service hubs, supporting Gereffi (2017) 
analysis of the global value chain governance transitions.

Economically, the complementary grouping tools clarify why spe-
cific sectors co-locate and how that maps into preparedness and policy 
design. Time-profile partitioning (GNDA; Fig.  5) reveals a fast-moving 
‘‘input–coordination’’ constellation – farm and food systems, chemicals 
and advanced materials, semiconductors/electronics, freight and stor-
age, digital infrastructure, and professional/technical services – whose 
joint motion arises from common choke-point inputs (e.g., fertiliz-
ers, rare earths, specialty chemicals, chips) and tight synchronization 
of logistics and data; actionable safeguards here include upstream 
buffer capacity for those inputs, narrowly scoped duty exemptions 
on bottleneck components, pre-cleared ‘‘green lanes’’ for cargo and 
data, and supplier spreads across at least three regions. A second, 
investment-sensitive ‘‘build-and-utilities’’ constellation – extraction and 
basic materials with building and energy/water services – clusters 
because capital-expenditure cycles bind them; counter-cyclical public 
orders, regional reserves of key materials, and rules-of-origin that 
reward dual sourcing dampen volatility. A slow-adjusting ‘‘social and 
knowledge’’ constellation – education, health, and cultural/publishing 
– moves together via income channels rather than input ties, calling for 
income smoothing and service-continuity contracts rather than border 
measures. Using multiple grouping lenses is essential: modularity-based 
partitions on indicator graphs highlight system levers; GNDA identifies 
who moves together and when; binary biclustering (iBBiG; Table  5) 
pinpoints dense origin–target dyads that actually carry transmission. 
Overlaying lead–lag evidence from the causality tests onto these biclus-
ters (Fig.  6) marks which dyads ignite cascades and the typical delay, 
enabling a tiered playbook: sentinel dashboards on the fast-moving 
constellations trigger narrow waivers and logistics fast-tracks; if the 
build-and-utilities constellation lights up next, deploy material swap 
lines and diversification mandates; if the slow constellation activates, 
pivot to demand-side stabilizers. This integrated reading turns other-
wise technical groupings into precise, time-sequenced resilience and 
trade actions.

The observed temporal differentiation in industrial responsiveness 
patterns reflects fundamental economic structural characteristics that 
determine adjustment speeds to global trade disruptions. Early-
responding industries—primarily agriculture and food products
(A01_02), electronics (C26), financial services (K), and telecommunica-
tions (J61)-exhibit characteristics associated with rapid market adjust-
ment capabilities: high technology intensity, short production cycles, 
and immediate consumer demand sensitivity (Acemoglu et al., 2012b; 
Autor et al., 2020). These sectors typically operate with lower capital 
intensity and higher labor mobility, enabling swift reallocation of 
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resources during economic shocks, consistent with Melitz and Redding 
(2014) findings on firm heterogeneity in trade adjustment. The early re-
sponsiveness of the electronics sector aligns with Timmer et al. (2014)’s 
and Kordalska et al. (2025)’s studies of rapid global value chain 
reconfiguration in technology-intensive industries, where modular pro-
duction processes facilitate quick supplier switching and geographic 
relocation. Conversely, late-responding industries – construction (F), 
basic materials (C24), and utilities (D, E) – are characterized by high 
capital intensity, long investment horizons, and substantial sunk costs 
that create adjustment rigidities (Decker et al., 2020). These upstream 
and midstream industries face structural constraints including long-
term contracts, specialized infrastructure, and regulatory frameworks 
that impede rapid reconfiguration, supporting Antràs and Chor (2013) 
theory of sequential production and adjustment costs in global supply 
chains. The intermediate timing of manufacturing industries (C20, C28, 
C29) reflects their position in value chains where adjustment speeds 
depend on both upstream input availability and downstream demand 
patterns, creating moderate response lags that correspond to inventory 
cycles and production planning horizons (Alfaro et al., 2019). This 
sectoral stratification suggests that trade policy interventions should 
be temporally sequenced: immediate support for technology-intensive 
and service sectors, medium-term assistance for manufacturing, and 
long-term structural programs for capital-intensive industries, recog-
nizing that cross-country variations within the same industry may 
reflect differences in technological sophistication, market structure, and 
institutional frameworks (Caselli et al., 2020; Conteduca et al., 2025).

These results indicate that the systematic lag between the initial 
disruptions and their broader economic consequences. While changes in 
homophily (as an indication of a change in the industry trade structure) 
and centrality indicators (as an indication of the changed role of indus-
tries) emerges early in sectors such as computing, electronics, finance, 
and telecommunications, cascading effects reach industries such as 
education, social work, publishing, and construction much later. This 
delayed response underscores how crises often unfold in waves, first 
impacting direct trade and financial hubs and then trickling down to 
peripheral sectors. If a crisis escalates, then industries dependent on 
discretionary spending, such as arts, entertainment, and recreation, will 
likely suffer the most prolonged instability. Ultimately, these patterns 
emphasize the importance of proactive policy measures and diversified 
trade strategies to mitigate vulnerabilities across industrial sectors, 
ensuring resilience in the face of global economic upheavals.

5.3. Reorganization of countries’ positions in international trade

The primary takeaway from Fig.  7 is that the global dominance 
of leading countries is declining, while leadership roles are being 
significantly rearranged (compare Fig.  7(a–g) to Fig.  7(h)). The re-
sults are illustrated in Fig.  7 underscore the changing dynamics of 
global trade networks, particularly the rising significance of dominating 
states, especially China. During the examined timeframe, China’s rise 
is characterized by a steady growth in export quantities, centrality 
metrics across all sectors (see Fig.  7(b, d–f)), and FDs (see Fig.  7(h)), 
in stark contrast to the declining relative centrality values of other 
prominent countries. This trend highlights China’s strategic emphasis 
on augmenting its involvement in commerce and supply chains (see 
Fig.  7(d–e)), establishing itself as a pivotal mediator of global trade. 
The shift in dominance from the US to China, as indicated by metrics 
such as PageRank (see Fig.  7(b)), hub (d), authority centralities (e), 
and FDs (h), signifies a significant reconfiguration of trade relations and 
underscore China’s increasing power and essential role in global supply 
chains. The present Trump administration’s China policy appears to be 
a rational measure; nonetheless, importantly, owing to global intercon-
nection, the ramifications of the tariff conflict extend beyond China and 
may negatively influence the entire trade framework.

The observed grouping of countries’ trade based on Granger causal-
ity analysis highlights the temporal dynamics of trade interactions, 
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suggesting underlying economic interdependencies and responsiveness 
among nations. The first group, which includes Estonia, the United 
Kingdom, and several Asian countries, indicates that these economies 
are quick to respond to shifts in trade, owing to their export-driven 
growth strategies and integration in global supply chains. The subse-
quent grouping, emerging after an average of 2.25 years, encompasses 
a more diverse array of countries, suggesting a broader economic 
network that reacts to initial changes in trade by adapting their exports 
and imports accordingly, reflecting the interconnectedness of global 
trade flows. The notable lag of 2.94 years for the third group under-
scores the delayed response of larger, often more established economies 
such as the US and Germany, which may be less agile owing to their size 
and complexity but significant in world trade dynamics. The observed 
causal relationships between the two middle groups, with an average 
lag of 1.92 years from the countries in the third group, suggests that 
if changes do occur in the third group, then they will also affect 
countries in the second group, as is likely the case with the current 
US–Europe tariffs. Finally, Sweden and Ukraine belong to the group 
of late responders, which suggests that the effects of potential crises 
appear the latest here or that they are able to adequately mitigate their 
effects. These findings emphasize the intricate and varied nature of 
global trade interactions, highlighting the importance of considering 
temporal dynamics in economic analyses to better understand the 
causal relationships among countries in terms of trade.

A large tariff increase would initially hit nations that are heavily 
integrated into global trade flows – especially those in the second group 
– such as Japan, China, and Belgium, which would struggle with rising 
costs and shrinking competitive advantages. Additionally, disruptions 
would severely affect economies with strong industrial dependence, 
such as Germany and the US, triggering delayed but significant con-
sequences for trade relationships worldwide. These findings align with 
industry-level causality results, where sectors such as agriculture, elec-
tronics, transportation, and public services show the earliest structural 
adjustments to trade dynamics.

Ultimately, the causality of industry shifts and trade transformations 
is intrinsically linked. Early-reacting countries are home to industry 
that are the first to undergo structural changes, reinforcing the idea 
that economic shocks propagate through industrial sectors before ex-
panding to national trade policies. As trade adjustments appear to 
follow cascading patterns – with an initial group reacting first, which 
is followed by broader economic shifts –; thus, it becomes crucial 
for policymakers and businesses to anticipate disruptions on the basis 
of industrial vulnerabilities. By understanding the interconnectedness 
of trade and industry responses, nations can develop more resilient 
economic strategies, thus minimizing risks from potential crises and 
ensuring the stability of global commerce.

China and the US play pivotal roles in global trade dynamics, 
acting as central hubs that influence broader economic shifts. Based 
on causality analysis, both countries fall within the third causal group, 
meaning that their trade fluctuation, in the case of a global crisis, 
occurs slightly later than do those in early-responding nations, but 
due to interconnectedness and causal mechanisms, trade in almost all 
economies disruptions if any radical change occurs in these countries. If 
more serious tariff measures were implemented in Chinese or US trade; 
then it would disrupt supply chains, increase production costs, and 
force countries to restructure their trade dependencies. Nations heavily 
integrated with these economies – such as Germany, Japan, and Mexico 
– would face immediate trade disruptions, leading to price volatility 
and slower economic growth. Industries reliant on Chinese manufactur-
ing or US consumer demand would struggle, prompting shifts toward 
regional trade agreements or diversification in sourcing strategies. The 
ripple effects could restructure global trade hierarchies, potentially 
accelerating economic fragmentation and forcing adaptation at key 
industrial sectors.
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6. Summary and conclusion

This paper presents a thorough analysis of global trade networks 
utilizing the OECD’s ICIO figures from 1995 to 2020. This study utilizes 
sophisticated methodologies, including temporal analysis of multilayer 
networks, clustering, biclustering, and causality analysis, to evaluate 
structural indicators such as degree centralization, resilience, transi-
tivity, and modularity. The study’s principal methodological advance-
ments encompass the utilization of Granger causality to elucidate the 
effect mechanism and temporal dynamics among network features, 
alongside the implementation of modularity-based community detec-
tion strategies to delineate clusters within the calculated causality 
networks. This study, by examining networks across diverse indus-
tries and nations, uncovers emerging dynamics and patterns in global 
trade, emphasizing changes in resilience, concentration, and the impor-
tance of significant players, particularly China and the US. Individual 
research is interrelated, examining various aspects of global trade 
linkages and enhancing the comprehensive understanding of how eco-
nomic disturbances affect trade patterns. This research is essential for 
policymakers and business leaders, highlighting the need for adaptive 
methods to improve resilience in the face of persistent global economic 
fluctuations and crises, thereby promoting informed decision-making 
and sustainable economic development.

The research questions of this study – what causal patterns can 
be identified in multilayer trade network structures and how these 
patterns reveal the roles of specific countries and industries as drivers 
of change in global trade dynamics – have been comprehensively 
addressed through an in-depth temporal analysis of multilayer trade 
networks. The findings reveal significant shifts in structural indicators 
(see Contribution C1), such as increasing concentration and rising tran-
sitivity within trade networks, particularly highlighting the evolving 
roles of major players such as China and the US. This study con-
tributes to the literature by unearthing the nuanced causal relationships 
between trade dynamics and economic disruptions, particularly empha-
sizing the interconnectedness of countries and industries in the face of 
global economic change (see Contribution C2). By employing advanced 
methodologies such as Granger causality and modularity-based com-
munity detection, this research adds a unique layer of understanding 
to how industrial shifts propagate through trade networks, allowing 
for the better anticipation of such shifts in the future. Ultimately, 
this study underscores the importance of proactive policy measures, 
arguing for diversified trade strategies to enhance resilience against 
potential crises, thereby providing valuable insights for policymakers 
and economic strategists in navigating the complexities of global trade 
systems (see Contribution C3).

6.1. Implications for scholars

This study highlights the importance for scholars to utilize a va-
riety of methodologies – such as biclustering, network analysis, and 
causality methods – when intricate trade linkages are being examined. 
Each method offers distinct insights; network analysis uncovers the 
comprehensive structural characteristics of trade interactions, biclus-
tering identifies the concentrated causal relationships within particular 
subsets of nodes, and causality techniques clarify the temporal prece-
dence and influences among various properties. Analyzing multilayered 
networks are crucial for comprehending the complex interconnections 
within industry partnerships, enabling a more detailed examination of 
node interactions across several trade aspects. Excluding any of these 
approaches may result in an incomplete understanding; for example, 
without causality analysis, correlations may be erroneously interpreted 
as causation, and disregarding biclustering may overlook crucial rela-
tional dynamics that differ across contexts. This thorough methodology 
strengthens the validity of the results, enabling academics to formulate 
better informed conclusions regarding the changing dynamics of global 
commerce and its ramifications for economic policy.
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This study demonstrates that examining complex trade networks 
requires a multimethodological approach that combines network anal-
ysis, causality testing, and clustering techniques to capture different 
dimensions of trade relationships. Each method provides unique ana-
lytical insights: network analysis reveals structural characteristics and 
centrality patterns, Granger causality identifies temporal precedence re-
lationships between variables, and biclustering uncovers concentrated 
causal relationships within specific subsets of nodes and edges. Scholars 
should recognize that methodological complementarity is essential rather 
than optional when studying complex economic systems. Future re-
search should avoid methodological reductionism – the tendency to 
rely on single analytical approaches – as this inevitably leads to an 
incomplete understanding of multifaceted phenomena such as global 
trade dynamics.

The application of Granger causality testing to network structural 
indicators represents a significant methodological advancement that 
scholars should incorporate it into longitudinal trade studies. This 
research reveals that traditional cross-sectional network analysis fails 
to capture the temporal ordering of structural changes, missing criti-
cal insights into how disruptions propagate through trade systems. 
Scholars should adopt dynamic network analysis frameworks that explic-
itly model time-dependent relationships between network properties, 
moving beyond static snapshots to understand evolutionary processes. 
Identification of three-tier causal mechanisms – from robustness to 
concentration to community structure – provides a template for future 
research examining how economic shocks cascade through different 
levels of network organization.

Methodologically, our findings motivate an edge-centric pipeline: 
estimate temporal precedence via Granger/Bayesian tests to form a 
binary causal adjacency, then biclusters this matrix to recover het-
erogeneous ‘‘causal regimes’’—cohesive sets of relations sharing effect 
direction and lags. This complements node-level community detection 
by revealing multiplex shock-transmission pathways that are invisible 
in centralities or GVC indices. The approach yields reproducible tem-
plates for early-warning screens and scenario design that hinge on the 
link-level co-causality rather than aggregate node importance.

The multilayer network approach employed in this study offers 
superior analytical depth compared to single-layer trade network stud-
ies, enabling simultaneous examination of industry-specific and cross-
industry trade relationships. Scholars should recognize that layer inter-
dependencies in trade networks cannot be adequately captured through 
aggregated or isolated industry analyses. Future research should ex-
tend multilayer network theory to incorporate additional dimensions 
such as temporal layers, institutional layers (formal vs. informal trade 
relationships), and geographic layers (bilateral vs. multilateral trade 
agreements). This multidimensional approach is particularly crucial 
for understanding how policy interventions in one industry or region 
propagate across the entire trade ecosystem.

This study introduces biclustering methodology to trade network 
research, revealing simultaneous clustering of both nodes and relationships
that traditional clustering methods cannot identify. Scholars should 
recognize biclustering as a powerful tool for uncovering hidden pat-
terns in economic networks, particularly for identifying which specific 
relationships drive broader structural changes. The iterative Binary 
Biclustering of Gene sets (iBBiG) method adapted for trade networks 
provides a template for future applications in economic research. Schol-
ars should explore biclustering applications in other economic domains, 
such as financial networks, innovation ecosystems, and supply chain 
relationships, where understanding both actor groups and relationship 
patterns is crucial for comprehensive analysis.

The application of multiple community detection algorithms (Lei-
den, Louvain, Infomap) reveals that different modularity measures capture 
distinct aspects of trade network structure, suggesting scholars should 
employ multiple algorithms rather than relying on a single commu-
nity detection methods. This research demonstrates that community 
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structures in trade networks are not static but evolve in response to eco-
nomic and political changes, requiring dynamic community detection 
approaches. Future research should develop temporal community detec-
tion methods specifically designed for economic networks, incorporating 
economic theory about trade relationship formation and dissolution 
into algorithmic design.

While Granger causality testing provides valuable insights into tem-
poral precedence relationships, scholars must acknowledge its limita-
tions when applied to relatively short economic time series. This study’s 
adaptation of Granger causality to 26-year trade data demonstrates 
the need for modified causality testing frameworks that account for the 
specific characteristics of economic data, including structural breaks, 
policy interventions, and cyclical patterns. Scholars should develop
economic-specific causality measures that incorporate domain knowledge 
about trade relationship formation, policy implementation lags, and 
economic adjustment processes. Additionally, future research should 
explore alternative causality frameworks such as transfer entropy or 
convergent cross-mapping that may be more suitable for economic 
network data.

This research demonstrates the importance of the bridging network 
science methodologies with economic theory to generate meaningful in-
sights for policy and practice. Scholars should avoid purely method-
ological applications of network analysis that lack economic theoretical 
grounding, as this can lead to technically sophisticated but economi-
cally meaningless results. Future research should develop theoretically-
informed network metrics that capture economically relevant concepts 
such as comparative advantage, trade complementarity, and economic 
complexity. The integration of network centrality measures with eco-
nomic concepts such as export sophistication and economic fitness 
represents a promising direction for future theoretical development.

The reliance on OECD ICIO data highlights both opportunities and 
constraints for trade network research. Scholars should recognize that
data aggregation choices significantly impact the analytical results, and 
future research should systematically examine how different levels of 
sectoral and temporal aggregation affect network structure and causal 
relationships. The development of robustness testing frameworks for 
network-based economic analysis is essential, including sensitivity anal-
ysis for parameter choices in community detection algorithms, stability 
testing for biclustering results, and cross-validation approaches for 
causality testing. Scholars should also explore alternative data sources 
and develop methods for integrating multiple datasets to overcome the 
limitations of any single data source.

The application of ARIMA models to network structural indica-
tors represents an initial step toward predictive network analysis in 
trade research. Scholars should develop more sophisticated forecasting 
frameworks that incorporate network structure into prediction mod-
els, moving beyond univariate time series approaches to multivariate 
network-based forecasting. Future research should explore machine 
learning approaches specifically adapted for network data, including 
graph neural networks and network-aware ensemble methods. The 
development of scenario-based forecasting models that can simulate the 
impact of different policy interventions on trade network evolution 
represents a crucial area for future methodological development.

6.2. Implications for policymakers

This research underscores the importance of the trade network 
interdependencies and their vulnerabilities for policymakers in an in-
creasingly interconnected global economy. This research illustrates that 
trade networks frequently operate in unison, indicating that alterations 
in one nation can trigger swift transformations throughout the entire 
network, hence increasing the degree of vulnerability of countries 
during crises. If a major power, such as China or the US, were to 
impose punitive tariffs, then it could disrupt supply chains and provoke 
economic consequences that reverberate across global trade environ-
ment, especially impacting countries closely linked to these economies. 
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This analysis indicates that sanctions or tariffs may trigger cascading 
effects, resulting in significant alterations in trade connections and 
economic frameworks. Consequently, comprehending the interdepen-
dence of trade connections is essential; a uniform approach to sanctions 
may prove counterproductive, resulting in unforeseen repercussions 
for both the imposing and targeted nations. Policymakers must ac-
knowledge the complex dynamics inside trade networks and design 
sophisticated measures that consider these interrelations to reduce 
the degree of vulnerability and bolster economic resilience against 
potential disruptions.

Causal analysis reveals that certain industries – particularly agricul-
ture and food products, electronics, transportation, and public services 
– act as early indicators of structural change and exhibit strong cas-
cading effects throughout the trade network. This finding necessitates
sector-specific resilience strategies tailored to each industry’s role in the 
causal chain. For industries identified as early responders, policymakers 
should implement strategic stockpiling programs for critical inputs. For in-
stance, in the electronics sector, governments should maintain strategic 
reserves of rare earth elements and semiconductors, while in agricul-
ture, seed and fertilizer stockpiles should be established. Additionally,
supplier diversification mandates should be introduced for companies in 
these critical sectors, requiring them to maintain relationships with 
suppliers from at least three different geographic regions to prevent 
single-source dependencies.

The modularity analysis demonstrates strong regional clustering 
patterns within the global trade network, with communities exhibiting 
denser internal connections than external ones. This structural charac-
teristic suggests that policymakers should prioritize deepening regional 
trade agreements and establishing bloc-level coordination mechanisms. 
Specifically, regions should develop integrated payment systems to 
reduce dependence on dominant global currencies, create joint strategic 
reserve programs for critical commodities, and harmonize regulatory 
frameworks to facilitate rapid trade rerouting during crises. For ex-
ample, European policymakers should strengthen energy cooperation 
mechanisms and develop common procurement strategies for critical 
raw materials, whereas Asian economies should enhance supply chain 
integration through standardized logistics protocols and shared early 
warning systems.

Centrality analysis reveals increasing concentration of trade power, 
particularly the rising dominance of China and the relative decline of 
other major economies. To counteract this vulnerability, policymakers 
must implement active diversification strategies that reduce excessive 
dependence on dominant trade partners. This requires establishing
reshoring and nearshoring incentive programs that provide tax benefits, 
subsidies, and regulatory fast-tracking for companies that relocate the 
production of strategic goods closer to home markets. Furthermore, 
governments should launch industrial upgrading initiatives focused on 
moving up the value chain in sectors where they currently serve as low-
value suppliers, particularly in technology-intensive industries where 
supply chain control translates to economic leverage.

The identification of distinct causal groups among countries – with 
early responders such as Estonia, the UK, and South Korea signaling 
changes before they cascade to larger economies – provides a roadmap 
for developing predictive monitoring systems. Policymakers should es-
tablish real-time trade network dashboards that track key structural 
indicators including centrality measures, modularity coefficients, and 
resilience metrics. These systems should automatically trigger policy 
responses when threshold values are exceeded. For instance, when be-
tweenness centralization increases beyond historical norms, this should 
activate contingency plans for alternative trade route development. 
Similarly, declining modularity values should prompt enhanced re-
gional cooperation mechanisms.

The three-tier causal mechanism identified in this study – where 
robustness changes first, followed by concentration and fragmentation 
patterns, and finally community structures – provides a framework 
for graduated crisis response protocols. In the first phase, when network 
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robustness indicators decline, policymakers should activate protective 
measures for critical infrastructure and essential supply chains. During 
the second phase, characterized by changes in centralization patterns, 
governments should implement trade route diversification measures 
and activate alternative supplier networks. In the third phase, when 
community structures begin to shift, focus should turn to long-term 
structural rebuilding and establishing new trade partnerships to replace 
disrupted relationships.

Temporal causality analysis reveals that countries occupy differ-
ent positions in the global response hierarchy, requiring differentiated 
strategic approaches. Early-responding countries should maintain high 
flexibility and rapid adaptation capabilities, investing in diverse eco-
nomic portfolios and maintaining excess capacity in critical sectors. 
Late-responding countries such as Sweden and Ukraine should lever-
age their stability to serve as shock absorbers for regional networks, 
developing capabilities to maintain trade flows when other partners 
are disrupted. Large economies in the middle tier, including Germany 
and the United States, must recognize their systemic importance and 
implement responsible trade policies that consider global spillover ef-
fects, including gradual rather than sudden policy changes and advance 
consultation with trading partners.

Industry-level causality patterns reveal that sectors such as basic 
materials and construction have gained prominence while financial 
services have declined in hub centrality. This suggests that policy-
makers should rebalance industrial policies to reflect changing structural 
importance. Countries should develop critical industry protection pro-
grams for sectors identified as central to network stability, including 
preferential access to capital, workforce development programs, and 
regulatory protection from hostile takeovers. Simultaneously, policies 
should encourage the development of industrial redundancy in critical 
supply chains, supporting the maintenance of alternative production 
capabilities even when they may not be immediately cost-competitive.

The strong interconnections revealed between technology sectors in-
dicate vulnerabilities that require strategic technological autonomy mea-
sures. Policymakers must launch comprehensive technology sovereignty 
programs that build domestic research and development capabilities in 
critical areas including semiconductors, artificial intelligence, and re-
newable energy technologies. This involves creating innovation clusters 
that link universities, research institutions, and industry, establishing 
sovereign patent pools for critical technologies, and developing domes-
tic alternatives to foreign-controlled technology platforms. Addition-
ally, governments should implement technology supply chain mapping 
initiatives to identify and address critical dependencies before they 
become sources of vulnerability during crises.

7. Limitations and directions for future work

Notwithstanding the abovementioned constraints, this methodol-
ogy offers a comprehensive framework for analyzing intricate trade 
networks. A significant restriction is the dependability of causality 
tests when utilized on short-term time-series data, shown by the 26-
year timeframe examined in this work; the constrained data length 
may result in misleading correlations and compromise the precision 
of the projections. The dependence on the OECD’s The ICIO tables 
presents data constraints, as this dataset may fail to encompass all 
intricacies of trade dynamics or the complete spectrum of industries 
involved. Moreover, the aggregation of sectors might impede com-
prehensive analysis, as it conceals differences within subsectors and 
may neglect essential causal pathways. Excluding any of the utilized 
approaches, such as biclustering or network analysis, would result in 
the forfeiture of critical insights and might culminate in an inadequate 
understanding of the complexities inherent in trade interactions and 
structural transformations. The integration of various techniques is 
crucial for understanding the intricacies of global trade dynamics and 
for establishing a refined foundation for future analysis and policy 
suggestions.
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Future research derived from this study might concentrate on broad-
ening the temporal examination of multilayer trade networks beyond 
the 1995–2020 period to include more recent developments, such 
as the enduring effects of the COVID-19 pandemic and geopolitical 
conflicts. Moreover, researchers could investigate the integration of 
more detailed data to mitigate the constraints linked to sectoral aggre-
gation, facilitating a more profound understanding of certain subsector 
dynamics and their trading patterns. Future research might examine 
the influence of developing technologies on trade dynamics and the 
contributions of digital trade in transforming global economic relations. 
Moreover, analyzing the impact of diverse policy interventions on 
real-time trade networks could furnish policymakers with prompt in-
sights to formulate more effective strategies. Utilizing machine learning 
or sophisticated statistical methods to improve the outcomes of the 
causal analysis of emerging trends might deepen the understanding of 
these complex networks, hence enabling more precise forecasting and 
scenario planning.
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Appendix A. Additional figures and tables

See Figs.  A.9–A.11.

Appendix B. List of employed node-level indicators

Table  B.6 shows the employed node-level centrality measures, for 
a given (fixed) year. where 𝜎𝑖,𝑘(𝑐𝑗𝑝) is the number of shortest paths 
between nodes 𝑐𝑖𝑝 and 𝑐𝑘𝑟 that pass through node 𝑐𝑗𝑞 . 𝜎𝑖,𝑘 is the total 
number of shortest paths between countries 𝑎𝑖 and 𝑎𝑘; 𝑑(𝑐𝑗𝑞 , 𝑐𝑖𝑝) is the 
shortest distance from country 𝑗 in industry 𝑞 to country 𝑖 in industry 𝑝; 
𝜆 is the eigenvalue of the adjacency matrix used to compute eigenvector 
centrality; 𝑑 is a damping factor used in PageRank calculations, typi-
cally set to around 0.85; 𝐻𝑂𝑀𝐶

𝑗𝑞 is a relative centrality or Homophily 
measure for a given centrality measure 𝐶 for country 𝑗 in industry 𝑞, 
𝐶(𝑐𝑗𝑞)|𝑙𝑞  is a given centrality measure restricted to the industry 𝑞; 𝐶(𝑐𝑗𝑞)
is an arbitrary centrality value without any industrial restriction.

Appendix C. Employed network-level indicators

Table  C.7 lists the employed network-level indicators for a fixed 
year. 

where 𝑁 is the total number of nodes (countries), 𝑀 is the total 
number of edges, 𝑁 retain

𝑝  is the number of nodes in the largest compo-
nent in sector 𝑝, 𝐴𝑖𝑝,𝑗𝑞 is the (supra) adjacency matrix entry indicating 
connections between nodes 𝑖 and 𝑗 in sector 𝑝 and sector 𝑞, |𝑁𝑖𝑝| is 
the number of reachable nodes from node 𝑖 in sector 𝑝, and 𝐶𝑙𝑢𝑝 is the 
clustering coefficient in industry 𝑝.
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Fig. A.9. Sectorial network properties.
Appendix D. The setting of ARIMA and causality analysis

The ARIMA model is a widely used statistical technique for fore-
casting time-series data. The ARIMA model is characterized by three 
parameters—(𝑝, 𝑑, 𝑞), where 𝑝 is the number of autoregressive terms, 𝑑
is the degree of differencing needed to make the time series stationary, 
and 𝑞 is the number of lagged forecast errors in the prediction equation. 
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The general formulation of the ARIMA model can be expressed as: 

𝛷(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝛩(𝐵)𝜖𝑡 (D.1)

where 𝑦𝑡 represents the time series data, 𝐵 is the backshift operator, 
𝛷(𝐵) is the autoregressive polynomial of order 𝑝, (1 − 𝐵)𝑑 signifies the 
differencing operation (where 𝑑 represents the number of differences 
taken to achieve stationarity), 𝛩(𝐵) is the moving average polynomial 
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Fig. A.10. Network properties in time (forecast with Bayesian ARIMA, 95% confidence interval).
of order 𝑞, and 𝜖𝑡 denotes white noise error terms. By identifying ap-
propriate values for 𝑝, 𝑑, and 𝑞 through the analysis of Autocorrelation 
Function (ACF) and Partial Autocorrelation Function (PACF), one can 
construct an optimal ARIMA model tailored to the characteristics of the 
time series data.

Prior to applying the ARIMA model, ensuring that the time series 
data is stationary. Therefore, we assessed the results through tests such 
as the Augmented Dickey-Fuller (ADF) test, which examines the null 
hypothesis that a unit root is present in the time series. If the 𝑝-value 
obtained from the ADF test is below a predetermined significance level 
(commonly 0.05), the null hypothesis can be rejected, indicating that 
the series is stationary. If the data require differencing (i.e., 𝑑 > 0), 
this process is usually repeated until a suitable level of stationarity 
is achieved. Following differencing, diagnostic checks using the ACF 
and PACF plots help in identifying the optimal parameters 𝑝 and 𝑞. 
Finally, model validation can be performed using metrics such as the 
Akaike Information Criterion (AIC) or the Bayesian Information Crite-
rion (BIC), along with residual analysis to ensure the reliability and 
robustness of the ARIMA model. The parameters of the ARIMA model 
were determined by the auto.arima function of the forecast
package. However, the ACF and PACF values and the stationarity of the 
time series were also double checked. Stationarity was tested using ADF 
tests, while the terms were determined using ACF and PACF functions.

The objective of investigating causal relationships is to determine 
how alterations in the structure of the trade network or the roles 
of countries and industries influence other entities over time. The 
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employed Granger causality, a concept named after the econometrician 
Clive Granger (Granger, 1969), refers to a statistical hypothesis test 
that determines whether one time series can predict other time series 
on the basis of their historical values. Formally, time series 𝑌  is said 
to Granger-cause time series 𝑋 if past values of 𝑌  provide significant 
information about future values of 𝑋, given that past values of 𝑋
alone do not provide the same level of predictive power. This can 
be mathematically expressed in a VAR framework, where one might 
quantify the relationship as follows:

𝑋𝑡 = 𝑎0 +
𝑝
∑

𝑖=1
𝑎𝑖𝑋𝑡−𝑖 +

𝑞
∑

𝑗=1
𝑏𝑗𝑌𝑡−𝑗 + 𝜖𝑡 (D.2)

𝑌𝑡 = 𝑐0 +
𝑝
∑

𝑖=1
𝑐𝑖𝑌𝑡−𝑖 +

𝑞
∑

𝑗=1
𝑑𝑗𝑋𝑡−𝑗 + 𝜂𝑡 (D.3)

If the coefficients 𝑏𝑗 are statistically significant, we can conclude 
that 𝑌  Granger-causes 𝑋. A key aspect of Granger causality is that 
it does not imply true causality in the philosophical sense; rather, it 
establishes a predictive relationship on the basis of temporal precedence. 
Therefore, we use the precedence between time series rather than 
causality relationships.

To select the appropriate lag for Granger causality testing, several 
methods such as AIC, BIC, or SC were employed and it is tested with 
BVAR methods. These criteria evaluate the goodness of fit of models 
with varying lags, penalizing for complexity to prevent overfitting. 
Additionally, an F test was used to ascertain the significance of the 
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Fig. A.11. Average clustered industrial node-level properties forecasting by Bayesian ARIMA models.
n 
Granger causality results at different lag structures, ensuring that one 
appropriately captures the underlying temporal dynamics. To cross-
validate the results and lags of Granger causality analysis we also 
calculated several Bayesian approaches.

The BVAR method employs a structured prior distribution to address 
the curse of dimensionality in multivariate time series models. For 
a bivariate VAR(p) model 𝐲𝑡 = 𝐜 +

∑𝑝
𝑖=1 𝐀𝑖𝐲𝑡−𝑖 + 𝝐𝑡, the Minnesota 

prior assumes that each variable follows a random walk, with prior 
mean E[𝐴(𝑙)

𝑖𝑗 ] = 𝛿𝑖𝛿𝑖𝑗 where 𝛿𝑖 = 1 and 𝛿𝑖𝑗 is the Kronecker delta. The 
prior covariance structure is Var[𝐴(𝑙)

𝑖𝑗 ] =
𝜆2

𝑙2
𝜎2𝑖
𝜎2𝑗
, where 𝜆 controls overall 

tightness and 𝑙 represents the lag order. This method provides stable 
parameter estimates even with limited data by shrinking coefficients 
toward economically meaningful values, making it particularly suitable 
for Granger causality analysis where parameter precision is crucial for 
reliable inference.

The MCMC approach provides full posterior distributions for all pa-
rameters through Gibbs sampling, offering comprehensive uncertainty 
quantification. For the VAR system 𝐘 = 𝐗𝜷+𝐄 where 𝐄 ∼ 𝑀𝑁(𝟎,𝜮, 𝐈𝑇 ), 
we specify the following conjugate priors 𝜷|𝜮 ∼ 𝑀𝑁(𝐁0,𝜮,𝐕0)
and 𝜮 ∼ 𝐼𝑊 (𝐒0, 𝜈0). The Gibbs sampler alternates between drawing 
𝜷(𝑖)

|𝜮(𝑖−1),𝐘 ∼ 𝑀𝑁(𝐁̂,𝜮(𝑖−1), 𝐕̂) and 𝜮(𝑖)
|𝜷(𝑖),𝐘 ∼ 𝐼𝑊 (𝐒̂, 𝜈̂), where 

the hat notation denotes posterior parameters. Granger causality is 
assessed by computing the posterior probability 𝑃 (𝛾𝑗 ≠ 0|𝐘) for the 
coefficients of the causal variable. This method captures the full param-
eter uncertainty and provides probabilistic statements about causality 
relationships.

The BFA method provides direct model comparison by computing 
the ratio of marginal likelihoods between competing hypotheses. For 
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testing whether 𝑥1 Granger-causes 𝑥2, we compare models 𝑀1 (un-
restricted) and 𝑀0 (restricted) through 𝐵𝐹10 = 𝑝(𝐲2|𝑀1)

𝑝(𝐲2|𝑀0)
, where the 

marginal likelihood under conjugate Normal-Gamma priors is 𝑝(𝐲|𝑀) =
𝛤 (𝛼𝑛)
𝛤 (𝛼0)

(𝛽0)𝛼0
(𝛽𝑛)𝛼𝑛

|𝐕𝑛|
1∕2

|𝐕0|1∕2
(2𝜋)−𝑇 ∕2, with 𝛼𝑛 = 𝛼0+𝑇 ∕2, 𝛽𝑛 = 𝛽0+

1
2 (𝐲

𝑇 𝐲+𝐛𝑇0 𝐕
−1
0 𝐛0−

𝐛𝑇𝑛 𝐕
−1
𝑛 𝐛𝑛), and 𝐕−1

𝑛 = 𝐕−1
0 +𝐗𝑇𝐗. The posterior probability of causality 

is then 𝑃 (𝑀1|𝐲) = 𝐵𝐹10
1+𝐵𝐹10

 assuming equal prior model probabilities. 
This approach provides direct evidence quantification for competing 
causal hypotheses.

The synergistic value of employing all four methods lies in their 
complementary strengths and the robustness achieved through method-
ological triangulation. Convergent results across frequentist and Bayesia
paradigms strengthen confidence in causal inferences, whereas diver-
gent results signal the need for deeper investigation. The classical 
approach provides computational efficiency and familiar statistical 
interpretation, while Bayesian methods offer richer uncertainty charac-
terization and more flexible modeling assumptions. The BVAR method 
connects classical and fully Bayesian approaches, offering improved 
finite-sample properties without the computational intensity of MCMC. 
The BFA provides the most direct hypothesis testing framework, yield-
ing clear evidence statements about relative model support. Together, 
these methods create a robust analytical framework that captures dif-
ferent dimensions of statistical evidence, computational efficiency, and 
interpretive clarity, ultimately leading to more reliable and nuanced 
conclusions about causal relationships in time series data.

To establish a strong consensus across the four methodological ap-
proaches, we must first standardize the diverse outputs into a common 
evidence scale [0, 1], where 0 indicates no evidence for causality and 1 
represents maximum evidence. Let 𝐸𝑖 ∈ [0, 1] denote the standardized 
evidence measure from method 𝑖, where 𝑖 ∈ {1, 2, 3, 4} corresponds to 
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Table B.6
Employed node-level indicators in the multilayer trade network.
 Abbr. Node-Level 

Indicator
Formula Meanings  

 DCI Indegree 
centrality

𝐷𝐶𝐼(𝑐𝑗𝑞 ) =
∑

𝑐𝑖𝑝∈𝑉
𝑒𝑖𝑝,𝑗𝑞 The number of exporters to country 𝑗 in 

industry 𝑞.
 

 DCO Outdegree 
centrality

𝐷𝐶𝑂(𝑐𝑗𝑞 ) =
∑

𝑐𝑖𝑝∈𝑉
𝑒𝑗𝑞,𝑖𝑝 The number of importers from country 𝑗

in industry 𝑞.
 

 DC Degree 
centrality

𝐷𝐶(𝑐𝑗𝑞 ) = 𝐷𝐶𝐼(𝑐𝑗𝑞 ) +𝐷𝐶𝑂(𝑐𝑗𝑞 ) The number of trade partners of country 
𝑗 in industry 𝑞.

 

 SCI Instrength 
centrality

𝑆𝐶𝐼(𝑐𝑗𝑞 ) =
∑

𝑐𝑖𝑝∈𝑉
𝑤(𝑒𝑖𝑝,𝑗𝑞 ) The volume of exports to country 𝑗 in 

industry 𝑞.
 

 SCO Outstrength 
centrality

𝑆𝐶𝑂(𝑐𝑗𝑞 ) =
∑

𝑐𝑖𝑝∈𝑉
𝑤(𝑒𝑗𝑞,𝑖𝑝) The volume of imports from country 𝑗

in industry 𝑞.
 

 BC Betweenness 
centrality

𝐵𝐶(𝑐𝑗𝑞 ) =
∑

𝑐𝑖𝑝≠𝑐𝑗𝑞≠𝑐𝑘𝑟
𝜎𝑖,𝑘 (𝑐𝑗𝑝 )
𝜎𝑖,𝑘

Which a country acts as a bridge along 
the shortest paths between other 
countries in the trade network.

 

 CC Closeness 
centrality

𝐶𝐶(𝑐𝑗𝑞 ) =
1

∑

𝑐𝑖𝑝 (𝑡)∈𝑉
𝑑(𝑐𝑗𝑞 ,𝑐𝑖𝑝 )

How quickly a country can access other 
countries in the trade network based on 
the shortest paths.

 

 EC Eigenvector 
centrality

𝐸𝐶(𝑐𝑗𝑞 ) =
1
𝜆

∑

𝑐𝑖𝑝∈𝑉
𝑤(𝑒𝑖𝑝,𝑗𝑞 )𝐸𝐶(𝑐𝑖𝑝) Country’s influence in the trade network 

by considering not just the number of 
connections but the importance of those 
connections.

 

 AUT Authority 
centrality

𝐴𝑈𝑇 (𝑐𝑗𝑞 ) =
∑

𝑐𝑖𝑝∈𝑉
𝐻𝑈𝐵(𝑐𝑖𝑝) The country’s reputation or significance 

as a trusted source of exports within a 
particular industry. High authority 
scores indicate that a country is seen as 
a primary destination for trade.

 

 HUB Hubness 
centrality

𝐻𝑈𝐵(𝑐𝑗𝑞 ) =
∑

𝑐𝑖𝑝∈𝑉
𝐴𝑈𝑇 (𝑐𝑖𝑝) The ability of a country to direct trade 

toward other significant trading partners.
 

 PRC PageRank 
centrality

𝑃𝑅𝐶(𝑐𝑗𝑞 ) = (1 − 𝑑) + 𝑑
∑

𝑐𝑖𝑝∈𝑉
𝑃𝑅𝐶(𝑐𝑖𝑝 )
𝐷𝐶𝑂(𝑐𝑖𝑝 )

The importance of a country based on 
the trade volume and connectivity of its 
trading partners.

 

 HOM Homophily 𝐻𝑂𝑀𝐶
𝑗𝑞 = 𝐶(𝑐𝑗𝑞 )% =

𝐶(𝑐𝑗𝑞 )|𝑙𝑞
𝐶(𝑐𝑗𝑞 )

Relative centrality value restricted to 
industry 𝑞.

 

-

BVAR, Classical VAR, MCMC analysis, Bayesian, and BFA approaches, 
respectively.

For the Granger causality based on classical VAR method, we trans-
form the 𝑝-value 𝑝 using the monotonic transformation: 

𝐸1 = 1 − 𝑝 (D.4)

For the BVAR, we utilize the Forecast Error Variance Decomposition 
(FEVD) proportion 𝜙 ∈ [0, 1] that variable 𝑥1 contributes to the variance 
of variable 𝑥2 at horizon ℎ: 

𝐸2 =
FEVD𝑥1→𝑥2 (ℎ)

∑

𝑗 FEVD𝑗→𝑥2 (ℎ)
(D.5)

For the MCMC Bayesian method, we directly use the posterior 
probability of causality: 

𝐸3 = 𝑃 (𝛾 ≠ 𝟎|𝐘) (D.6)

where 𝛾 represents the vector of coefficients for the causal variable in 
the target equation.

For the BFA, we convert the Bayes factor 𝐵𝐹10 to posterior proba-
bility assuming equal prior model probabilities: 

𝐸4 =
𝐵𝐹10

1 + 𝐵𝐹10
(D.7)

For the strong consensus, significant causality (𝑝 < 0.01), high 
posterior probability (𝑃𝑟𝑜𝑏(> 0.85)), strong FEVD (𝐹𝐸𝑉 𝐷 > 0.15), 
and strong 𝐵𝐹10 > 5 were assumed Granger causality between two 
time series. This careful approach is essential in economic modeling, 
where misidentified causal relationships could lead to misguided policy 
recommendations or investment strategies.

Conversely, instantaneous causality is a more immediate concept, 
which refers to the relationship between variables at the same point 
in time. Such causality assesses whether two variables are correlated 
at a specific moment, typically measured via correlation coefficients. 
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Mathematically, if two variables 𝑋𝑡 and 𝑌𝑡 have their correlation is 
expressed as follows: 

𝑐𝑜𝑟(𝑋𝑡, 𝑌𝑡) =
𝑐𝑜𝑣(𝑋𝑡, 𝑌𝑡)

𝜎𝑋𝜎𝑌
(D.8)

where 𝑐𝑜𝑣 denotes covariance and 𝜎 represents the standard deviations 
of 𝑋 and 𝑌 , then, instantaneously, changes in one variable may be 
associated with changes in the other variables at the same time. Unlike 
Granger causality, instantaneous causality does not attempt to evaluate 
the temporal influence of one variable on another variable. When com-
paring the two concepts, Granger causality focuses on the predictive 
capacity of a variable over time, whereas instantaneous causality exam-
ines the correlation at a single point in time. Both concepts can coexist 
in an analysis; one may find that two variables are instantaneously 
correlated but does not exhibit a Granger-causal relationship, indicating 
that while they move together, one does not predict the other.

Despite their advantages, Granger causality and instantaneous causal
ity analyses have several limitations. These analyses assume linear 
relationships between variables and can be sensitive to the choice of 
lags and the presence of outliers. Furthermore, these analyses may 
lead to spurious results in the presence of confounding variables 
or nonstationary data, which necessitates pretesting for stationarity 
through tests such as the ADF test. However, despite these limitations, 
Granger causality and instantaneous causality can be incredibly useful 
in analyzing a 26-year trade network in terms of deriving insights 
into the dynamic relationships among trading countries, industries, and 
economic indicators. By applying appropriate preprocessing steps, such 
as differencing and cointegration analysis, researchers can enrich their 
understanding of how trade dynamics change over time and which 
factors truly influence these changes in a temporally structured manner, 
shedding light on policy implications and future trends in international 
trade. However, when analyzing relatively short-term time-series data, 
such as a 26-year period (1995–2020), Granger causality emerges as an 
ideal choice because advanced causality methods require longer-term 
time series.
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Table C.7
Network-level indicators in the multilayer trade network.
 Abbr. Network-level 

indicator
Short mathematical formula Interpretation  

 Assort Assortativity 𝐴𝑠𝑠𝑜𝑟𝑡 =
∑

𝑖𝑝 (𝐷𝐶(𝑐𝑖𝑝 )⋅𝐷𝐶(𝑐𝑗 𝑞))−
1
𝑀

(
∑

𝑖𝑝 (𝐷𝐶(𝑐𝑖𝑝 ))
)2

1
𝑀

∑

𝑖 (𝐷𝐶(𝑐𝑖𝑝 ))2−
1
𝐸

(
∑

𝑖𝑝 (𝐷𝐶(𝑐𝑖𝑝 ))
)2 Describes the tendency of countries to connect with others that 

have similar trade volumes or degrees, indicating whether trade 
relationships promote balance or disparity.

 

 Dens Density 𝐷𝑒𝑛𝑠 = 𝑀
𝑁(𝑁−1)

Quantifies the proportion of possible trade connections that are 
realized, indicating how interconnected the countries are overall.

 

 AVPL Average Path 
Length

𝐴𝑉 𝑃𝐿 = 1
𝑁(𝑁−1)

∑

𝑐𝑖𝑝≠𝑐𝑗𝑞
𝑑(𝑐𝑖𝑝 , 𝑐𝑗𝑞 ) Represents the average number of steps needed to connect any 

two countries, reflecting the efficiency of trade routes.
 

 MLAVPL Multilayer 
Average Path 
Length

𝑀𝐿𝐴𝑉 𝑃𝐿 = 1
∑

𝑘 |𝐿𝑘 |

∑

𝑘 𝐴𝑉 𝑃𝐿𝑙𝑘 Assessing the average path length across multiple layers shows 
how efficiently connections can be made through different 
industries.

 

 Tra Transitivity 𝑇 𝑟𝑎 = 3×Triangles
Connected triplets Indicates the likelihood that countries sharing a common trading 

partner also trade with each other, reflecting the degree of 
clustering in trade relationships.

 

 DZI Indegree 
centralization

𝐷𝑍𝐼 = 1
𝑁−1

( ∑

𝑖𝑝 (𝐷𝐶𝐼(𝑐𝑖𝑝 )−𝐷𝐶𝐼𝑚𝑎𝑥 )
(𝑁−1)(𝐷𝐶𝐼𝑚𝑎𝑥−𝐷𝐶𝐼𝑚𝑖𝑛 )

)

Measures the inequality in the incoming trade connections across 
countries, indicating dependence on a few major importers.

 

 DZO Outdegree 
Centralization

𝐷𝑍𝑂 = 1
𝑁−1

( ∑

𝑖𝑝 (𝐷𝐶𝑂(𝑐𝑖𝑝 )−𝐷𝐶𝑂𝑚𝑎𝑥 )
(𝑁−1)(𝐷𝐶𝑂𝑚𝑎𝑥−𝐷𝐶𝑂𝑚𝑖𝑛 )

)

Indicates how concentrated outgoing trade relationships are, 
reflecting how few countries dominate as exporters.

 

 BZ Betweenness 
Centralization

𝐵𝑍 = 1
(𝑁−1)(𝑁−2)

∑

𝑖𝑝 𝐵𝐶(𝑐𝑖𝑝) Highlights the extent to which countries act as intermediaries in 
trade, facilitating connections between others and controlling 
trade flows.

 

 CZ Closeness 
Centralization

𝐶𝑍 = 1
𝑁

∑

𝑖𝑝 𝐶𝐶(𝑐𝑖𝑝) Reflects the overall accessibility of countries to each other in 
the network, indicating the efficiency of trade connections.

 

 PRZ PageRank 
Centralization

𝑃𝑅𝑍 = 1
𝑁

∑

𝑖𝑝 𝑃𝑅𝐶(𝑐𝑖𝑝) Measures the overall influence of countries based on their trade 
volume and the significance of their trading partners.

 

 MVA Mean Vertex 
Asymmetries

𝑀𝑉𝐴 = 1
𝑁

∑

𝑖𝑝 |𝐷𝐶𝐼(𝑐𝑖𝑝) −𝐷𝐶𝑂(𝑐𝑖𝑝)| Provides insights into the balance between imports and exports 
across countries, highlighting structural inequalities in trade.

 

 RRes, SRes Resilience for 
Random/ 
Systematic 
Attack

∑

𝑝 𝑁 𝑟𝑒𝑡𝑎𝑖𝑛
𝑝 Measures the ability of the network to maintain connectivity 

under random/systematic removals of countries, indicating 
robustness of trade relationships.

 

 Mod Modularity 
Value

𝑀𝑜𝑑 = 1
2𝑀

∑

𝑖𝑝,𝑗𝑞 (𝐴𝑖𝑝,𝑗𝑞 −𝐷𝐶𝐼(𝑐𝑖𝑝)𝐷𝐶𝑂(𝑐𝑗𝑞 ))𝛿(𝐶𝑖 , 𝐶𝑗 ) Identifies the degree to which the network can be divided into 
modules, or communities, with dense internal connections and 
sparse external ones, indicating trade groupings.

 

 RCC Reach Club 
Coefficient

𝑅𝐶𝐶 = 1
𝑁

∑

𝑖𝑝 |𝑁𝑖𝑝| Measures the efficiency of trade reachability across the network, 
indicating how well countries can connect with each other.

 

 MLGLClu Multilayer 
Global 
Clustering

𝑀𝐿𝐺𝐿𝐶𝑙𝑢 = 1
𝑀

∑

𝑝 𝐶𝑙𝑢𝑝 Captures the clustering tendency across different industries, 
reflecting the propensity for countries to develop strong trade 
ties within and between layers.

 

) 
Appendix E. The application of community-based clustering and 
biclustering methods

Modularity-based community detection algorithms minimize Eq. (E.1
as follows: 
𝑀 = 1

2𝐿
∑

𝑖,𝑗

(

𝑟𝑖,𝑗 − 𝛾𝑟̂𝑖,𝑗
)

𝛿(𝐶𝑖, 𝐶𝑗 ), (E.1)

where 𝑀 is the modularity value, 𝑟𝑖,𝑗 is the edge weight between nodes 
𝑖 and 𝑗, 𝑟̂𝑖,𝑗 is the expected weight based on the null model of Newman 
(2006), 𝐿 is the total weight in the network, 𝛾 is a constant (default 1), 
and 𝛿 equals 1 if nodes 𝑖 and 𝑗 belong to the same community and 0 
otherwise. For directed similarity graphs, Eq. (E.2) must be minimized.

𝑀 = 1
𝐿

∑

𝑖,𝑗

(

𝑟𝑖,𝑗 − 𝛾𝑟̂𝑖,𝑗
)

𝛿(𝐶𝑖, 𝐶𝑗 ), (E.2)

The result of community detection is a partition of the graph. By 
further developing this method, by specifying a given distance measure, 
it is possible to search for modules and, thus, indicator groups between 
variables and data (Kosztyán et al., 2022). This procedure is adopted 
in the GNDA method, which does not require us to specify the number 
of clusters in advance. In real and synthetic tests, the method correctly 
estimated the number of clusters (Kosztyán et al., 2024a), and thus, we 
also used this approach to separate the time series of industry patterns.

Conversely, biclustering goes a step further by allowing for The 
simultaneous clustering of both rows and columns in an adjacency 
matrix, a capability that is particularly useful when dealing with data 
that have inherent multidimensional characteristics. In the context 
of a directed trade network, where nodes represent various node or 
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network properties and edges signify the causal relationships between 
these properties, biclustering can provide a more nuanced analysis. 
This approach allows for the identification of subgroups of nodes that 
exhibit similar behaviors or properties across specific conditions or 
timeframes while also revealing which causal relationships (the edges) 
are most significant within those groupings.

We employed the iBBiG method, which assumes that the utilized 
dataset is binary.

This algorithm balances the homogeneity (in this case, entropy) of 
the selected submatrix with the size of the league. Formally, the iBBiG 
algorithm maximizes the following target function if the binarized 
dataset with a given threshold 𝑡𝑟 is denoted as 𝐵𝑡𝑟: 

max ← 𝑠𝑐𝑜𝑟𝑒 ∶= (1 −𝐻)
𝛼
{ ∑

𝑖
∑

𝑗 []𝑖,𝑗 ,  if 𝑀𝑒() > 𝜏
0 , if 𝑀𝑒() ≤ 𝜏,

(E.3)

where 𝑠𝑐𝑜𝑟𝑒 is the score value of the submatrix (bicluster, league) 
 ∈ 𝐵𝑡𝑟. 𝐻 is the entropy of submatrix , with a given threshold 𝑡𝑟, 
𝑀𝑒() is the median of bicluster , 𝛼 ∈ [0, 1] is the exponent, and 𝜏 is 
the cutting value. If 𝑡𝑟, 𝜏 or 𝛼 is increased, then we obtain a smaller but 
more homogeneous submatrix. To strengthen the significance, stability 
and reliability, previous studies (see, e.g., Gusenleitner et al., 2012; 
Kosztyán et al., 2019) recommend that the balance exponent (𝛼) be 
set to 0.3 while the cutoff threshold (𝜏) be set to 0.5.

Identifying biclusters is a heuristic method. Therefore, in addition 
to conducting significance tests both for rows and columns, we must 
calculate the stability of the biclusters. Typically, a bootstrapping algo-
rithm is used to calculate the stability of biclusters. This method ignores 
rows and columns and evaluates the changes within biclusters Lee et al. 
(2011). Stability is also calculated for both rows and columns. We say 
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Table F.8
Employed similarity measures in the multilayer trade network.
 Abbrev. Similarity indicator Formula Interpretation  
 NS Node similarity 𝑁𝑆(𝑝, 𝑞) = 1

𝐴

∑

𝑖
|𝑁(𝑐𝑖𝑝 )∩𝑁(𝑐𝑖𝑞 )|
|𝑁(𝑐𝑖𝑝 )∪𝑁(𝑐𝑖𝑞 )|

Measures the extent to which a country share common neighbors in 
different industries, indicating their relational similarity based on 
direct trade links.

 

 ES Edge similarity 𝐸𝑆(𝑝, 𝑞) = 1
𝐴

∑

𝑖
|𝑇 (𝑒𝑖𝑝 )∩𝑇 (𝑒𝑖𝑞 )|
|𝑇 (𝑒𝑖𝑝 )∪𝑇 (𝑒𝑖𝑞 )|

Assesses the similarity between two edges based on their incident 
nodes and trade volumes, reflecting how closely two trade 
relationships mirror each other.

 

 PD Pearson correlation 
of degree 
centralities

𝑃𝐷(𝑝, 𝑞) = 𝑐𝑜𝑟(𝐷𝐶(𝑐𝑖𝑝), 𝐷𝐶(𝑐𝑖𝑞 )) Examines the linear correlation between the degree centralities of 
countries across two different industries, indicating the consistency 
of trade relationships across those industries.

 

 SP Shortest path 
distances

𝑆𝑃 (𝑝, 𝑞) = 1
𝐴

∑

𝑖(min{𝑑(𝑐𝑖𝑝 , 𝑐𝑖𝑞 )}) Represents the minimum number of edges that must be traversed to 
connect two countries, highlighting the efficiency of trade routes 
and potential connectivity between them.

 

Table G.9
List of countries.
 ID ISO3 Country ID ISO3 Country  
 1 ARG Argentina 40 KAZ Kazakhstan  
 2 AUS Australia 41 KHM Cambodia  
 3 AUT Austria 42 KOR Korea  
 4 BEL Belgium 43 LAO Lao (People’s Democratic Republic) 
 5 BGD Bangladesh 44 LTU Lithuania  
 6 BGR Bulgaria 45 LUX Luxembourg  
 7 BLR Belarus 46 LVA Latvia  
 8 BRA Brazil 47 MAR Morocco  
 9 BRN Brunei Darussalam 48 MEX Mexico  
 10 CAN Canada 49 MLT Malta  
 11 CHE Switzerland 50 MMR Myanmar  
 12 CHL Chile 51 MYS Malaysia  
 13 CHN China (People’s Republic of) 52 NGA Nigeria  
 14 CIV Côte d’Ivoire 53 NLD Netherlands  
 15 CMR Cameroon 54 NOR Norway  
 16 COL Colombia 55 NZL New Zealand  
 17 CRI Costa Rica 56 PAK Pakistan  
 18 CYP Cyprus 57 PER Peru  
 19 CZE Czechia 58 PHL Philippines  
 20 DEU Germany 59 POL Poland  
 21 DNK Denmark 60 PRT Portugal  
 22 EGY Egypt 61 ROU Romania  
 23 ESP Spain 62 RUS Russian Federation  
 24 EST Estonia 63 SAU Saudi Arabia  
 25 FIN Finland 64 SEN Senegal  
 26 FRA France 65 SGP Singapore  
 27 GBR United Kingdom 66 SVK Slovakia  
 28 GRC Greece 67 SVN Slovenia  
 29 HKG Hong Kong, China 68 SWE Sweden  
 30 HRV Croatia 69 THA Thailand  
 31 HUN Hungary 70 TUN Tunisia  
 32 IDN Indonesia 71 TUR Turkey  
 33 IND India 72 TWN Chinese Taipei  
 34 IRL Ireland 73 UKR Ukraine  
 35 ISL Iceland 74 USA United States  
 36 ISR Israel 75 VNM Vietnam  
 37 ITA Italy 76 ZAF South Africa  
 38 JOR Jordan 77 ROW Rest of the World  
 39 JPN Japan  
that a bicluster is significant (stable) if it is significant (stable) for both 
rows and columns. We calculated both the significance and stability of 
each bicluster.

Appendix F. List of employed similarity indicators

Table  F.8 lists the employed similarity measures comparing indus-
tries.

where 𝐴 is the number of actors where each country is considered 
only once. 𝑁(𝑐𝑖𝑝) is the set of neighbors (trading partners) for country 𝑖
in industry 𝑝, and 𝑇 (𝑒(𝑖𝑝)) is the set of trade relations for edges 𝑒(𝑖𝑝, 𝑖𝑞)
and 𝑒(𝑖 , 𝑖 ).
𝑞 𝑝
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Appendix G. List of country and industrial codes

See Tables  G.9 and G.10.

Data availability

All data and all code can be included into the final version. The 
entire source codes and data sources of the paper including calculations 
can be downloaded here: https://github.com/kzst/ICIO/.

https://github.com/kzst/ICIO/


Z.T. Kosztyán Structural Change and Economic Dynamics 76 (2026) 209–236 
Table G.10
List of industries (sectors).
 ID Old code Code Industry  
 1 D01T02 A01_02 Agriculture, hunting, forestry  
 2 D03 A03 Fishing and aquaculture  
 3 D05T06 B05_06 Mining and quarrying, energy producing products  
 4 D07T08 B07_08 Mining and quarrying, non-energy producing products  
 5 D09 B09 Mining support service activities  
 6 D10T12 C10T12 Food products, beverages and tobacco  
 7 D13T15 C13T15 Textiles, textile products, leather and footwear  
 8 D16 C16 Wood and products of wood and cork  
 9 D17T18 C17_18 Paper products and printing  
 10 D19 C19 Coke and refined petroleum products  
 11 D20 C20 Chemical and chemical products  
 12 D21 C21 Pharmaceuticals, medicinal chemical and botanical products  
 13 D22 C22 Rubber and plastics products  
 14 D23 C23 Other non-metallic mineral products  
 15 D24 C24 Basic metals  
 16 D25 C25 Fabricated metal products  
 17 D26 C26 Computer, electronic and optical equipment  
 18 D27 C27 Electrical equipment  
 19 D28 C28 Machinery and equipment, nec  
 20 D29 C29 Motor vehicles, trailers and semi-trailers  
 21 D30 C30 Other transport equipment  
 22 D31T33 C31T33 Manufacturing nec; repair and installation of machinery and 

equipment
 

 23 D35 D Electricity, gas, steam and air conditioning supply  
 24 D36T39 E Water supply; sewerage, waste management and remediation 

activities
 

 25 D41T43 F Construction  
 26 D45T47 G Wholesale and retail trade; repair of motor vehicles  
 27 D49 H49 Land transport and transport via pipelines  
 28 D50 H50 Water transport  
 29 D51 H51 Air transport  
 30 D52 H52 Warehousing and support activities for transportation  
 31 D53 H53 Postal and courier activities  
 32 D55T56 I Accommodation and food service activities  
 33 D58T60 J58T60 Publishing, audiovisual and broadcasting activities  
 34 D61 J61 Telecommunications  
 35 D62T63 J62_63 IT and other information services  
 36 D64T66 K Financial and insurance activities  
 37 D68 L Real estate activities  
 38 D69T75 M Professional, scientific and technical activities  
 39 D77T82 N Administrative and support services  
 40 D84 O Public administration and defence; compulsory social security  
 41 D85 P Education  
 42 D86T88 Q Human health and social work activities  
 43 D90T93 R Arts, entertainment and recreation  
 44 D94T96 S Other service activities  
 45 D97T98 T Activities of households as employers; undifferentiated goods- and 

services-producing activities of households for own use
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