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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/kzst/ICIO/ This study examines the dynamic evolution of global trade networks from 1995 to 2020 using the Organization

x = for Economic Co-operation and Development’s (OECD’s) intercountry input-output (ICIO) data. This research
eywords:

R combines multilayer network theory methods with advanced statistical and econometric procedures, including
Multilayer trade networks R i i R .
Causality analysis dynamic multilayer network analysis methods, (bi)clustering, and causal analyses to evaluate the temporal
Global changes nature of structural, sectorial and country-level indicators. The primary objective of this study is to identify
Temporal patterns causal patterns in multilayer trade network structures and reveal the roles of specific countries and industries
as drivers of changes in global trade dynamics. Using the proposed methods, we define causal graphs
between the structural indicators of the multilayer network. The resulting causal graph is organized into
groups using modularity analysis, and the relationships are biclustered, thereby determining which structural
factors/industries/countries affect other country groups/industries and revealing the dynamics of structural
changes. We determine which factors change simultaneously and which factors and actors exhibit a delay
between their changes. The analysis reveals significant shifts in structural indicators, highlighting the evolving
roles of major players like China and the US. The findings indicate that the structural indicators of
trade networks/industries/countries often move in unison, with changes in one country/industry potentially
triggering rapid transformations across the entire network. This study also uncovers the cascading effects of
economic disruptions on trade patterns, emphasizing the interconnectedness of countries and industries in the
face of global economic changes. These insights are crucial for policymakers and business leaders, underscoring
the need for adaptive strategies to enhance the level of resilience of countries and industries to persistent global
economic fluctuations and crises.

1. Introduction reveal power transitions among countries (Li et al., 2024), which can
both be a consequence of political and economic decisions (Kosztyan

At the same time as this study was submitted, the US administration et al., 2024b) and influence further political decisions (Milner, 2017),
announced a large increase in tariffs, with which they intend to bring and highlight the interdependence of economies in a progressively
in a new era in world trade; thus, this study, which aims to explore globalized environment (Kosztyan et al., 2024b). Comprehending these

the actors, industries, and structural relationships of global trade, could
perhaps not be timelier. Examining the structural changes in trade
networks (Rauch, 2001; He and Deem, 2010; Guo et al., 2023) —
especially now, in this rapidly changing economic environment - is
essential, as these changes frequently reflect wider economic and social
transitions within the economy and society (Stolte and Emerson, 2021;
Mahutga, 2006). Shifts in trade patterns may indicate changes in con-
sumer preferences (Janeba, 2007), technical progress (Guerrieri, 1999;

structural alterations not only assists in forecasting future economic
trends but also enables the recognition of the weaknesses and opportu-
nities within trade systems (Sun et al., 2022), thus enhancing strategic
decision-making and promoting sustainable development (Xu et al.,
2025).

Recent literature has emphasized the importance of examining trade
networks through various lenses (Xu et al., 2025; Li et al., 2024). Focus-

Yi and Dan, 2021), the rise of new markets (Antonelli, 2002; Alamsyah ing on actual policy changes and their consequences (Kosztyan et al.,
et al., 2023), or geopolitical realignments (Barbieri, 2024), thereby im- 2024]3?’ rather than .hyl?othetlcal scenanos., offers a more accurate
pacting local economies and global market dynamics (Bartesaghi et al., reflection of trade policy impacts on economic outcomes (Goldberg and

2022; Antonelli, 2002). Furthermore, examining these alterations may
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Pavcnik, 2016; Ortiz et al., 2021). He and Deem (2010) and Guo et al.
(2023) highlighted the importance of investigating structural changes
in trade networks, while Stolte and Emerson (2021) and Mahutga
(2006) explored how these changes reflect wider economic and social
transitions and political decisions (Kosztyan et al., 2024b). Janeba
(2007) focused on the role of consumer preferences in shaping trade
patterns, and Antonelli (2002) examined the impact of technological
progress and new market emergence on global market dynamics. More
recent studies, such as Li et al. (2024), have delved into power transi-
tions among countries, with Kosztyan et al. (2024b) dealing with the
structural changes in trade networks caused by political and economic
decisions and crises.

Despite the wealth of research in this area, significant gaps in our
understand the causal patterns within trade network structures and the
identification of key drivers of change among countries and sectors
remain. Traditional methods have often focused on static analyses or
limited time frames, failing to capture the dynamic nature of trade
relationships and their evolution over extended periods. There is a
call for more sophisticated methodologies that can explore complex
interplay among the economic, political, and social factors driving trade
network dynamics. Additionally, many studies have focused only on
single-layer networks and have not fully explored the multilayered
nature of trade networks, which can provide deeper insights into the
complex interactions between different industries and countries.

To address these gaps, this study employs advanced methodologies
including the temporal analysis of multilayer networks, clustering,
biclustering, and causality analysis. These methods enable the dynamic
and causal analysis of structural indicators at the structural, country
and industry levels. By utilizing these techniques, we can explore the
interplay between industries and countries’ trade relations, which is
particularly relevant to the eve of the imminent trade war at the
time of writing this paper. This approach is particularly important
in the context of persistent global economic fluctuations and crises,
as we can gain a deeper understanding of how economic disruptions
affect trade relations and network structure, which can inform more
effective policymaking and business strategies to enhance the degree
of resilience to future challenges.

The main research question of our study is as follows:

RQ What causal patterns can be identified in multilayer trade net-
work structures, and how do these patterns reveal the roles of
specific countries and industries as drivers of change in global
trade dynamics?

The methodological framework employed in this study is grounded
in established theoretical principles for causal identification in mul-
tidimensional interactive systems, particularly those involving simul-
taneous country-industry-structural attribute dependencies. Granger
causality testing provides a theoretically sound approach for disen-
tangling temporal precedence relationships in complex economic net-
works where simultaneity bias and reverse causality are prominent
concerns (Hamilton, 2020). Recent advances in network econometrics
demonstrate that Granger causality, when applied to structural network
indicators, effectively captures propagation mechanisms in multilay-
ered systems where traditional instrumental variable approaches fail
due to the absence of valid exclusion restrictions (Siggiridou et al.,
2019). The integration of Bayesian validation methods (Bayesian Vec-
tor Autoregression (BVAR), Markov Chain Monte Carlo (MCMC) analy-
sis, Bayesian Factor Approach (BFA)) addresses the fundamental chal-
lenge of parameter uncertainty in finite samples, which is particularly
relevant for trade network analysis where structural breaks and non-
linearities can confound classical inference (Koop et al., 1996; Celani
et al.,, 2024). Biclustering methodology complements causality anal-
ysis by simultaneously identifying groups of causal relationships and
network nodes that exhibit coherent temporal patterns, addressing
the curse of dimensionality inherent in multi-country, multi-industry
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systems (G. Silva et al.,, 2024). This methodological combination is
theoretically justified because trade networks exhibit what Carvalho
and Gabaix (2013) term “granular origins of aggregate fluctuations”,
where microlevel (country-industry) shocks propagate through net-
work structures to generate macrolevel patterns, requiring both tempo-
ral precedence identification (Granger causality) and structural pattern
recognition (biclustering) to fully characterize the transmission mech-
anisms; however, to the best of our knowledge these methods are not
used together.

2. Background

In the current economic environment, especially at the beginning
of another tariff war, it is particularly important to understand the
dynamics of trade networks, that is, the interaction of actors and indus-
tries. The evolution of network science, boosted by the accessibility of
vast datasets and improved processing capabilities, has revolutionized
how academics and practitioners study complicated systems such as
trade networks (Xu et al., 2025). The volatility of trade arising from
political conflicts, economic crises, and health emergencies has un-
derscored the interconnectedness among trade relationships and their
effects on economic stability (Wang et al., 2023). While individual
countries struggle with the consequences of such disruptions, trying
to take countermeasures to reduce these effects, these measures are
quite limited due to the interconnectedness of trade networks (Zhao
et al., 2024). The increased degree of interdependence of countries in
the global trade environment has amplified the possibility of failure
propagation across international trade networks (Kang et al., 2024).

Research on the time-series analysis of trade networks has employed
predominantly dynamic network theory to examine trade relationships
over time (Yazawa, 2023). However, very few studies have addressed
the causal investigation of the structural characteristics of trade net-
works or the exploration of impact mechanisms. Forecasting has been
applied using Inter-Country Input-Output (ICIO) (Chen, 2024). These
approaches have been instrumental in identifying the key drivers of
trade network evolution and predicting future trade patterns (Chen,
2024).

While network analysis has been extensively used, causality analysis
within trade networks has been less common but not entirely absent.
Granger causality tests and vector autoregression models have been
employed to determine the causal relationships between different coun-
tries’ economic activities, providing insights into how changes in one
country can influence the trade dynamics of other countries (Saimul
and Darmawan, 2020). One study has utilized Graph Neural Networks
(GNNs) to model causal relationships in trade networks (Monken et al.,
2021), particularly in response to major economic events such as trade
wars or financial crises. Causal inference techniques have also been
explored to understand how external shocks propagate through trade
relationships; offering a deeper perspective on economic dependen-
cies (Rigana et al., 2021). However, to our knowledge, no study has
explored the causal relationships and mechanisms of effects among
countries, industries, and structural properties of the network. Further-
more, biclustering methods have not yet been applied in commercial
networks, although combining this method with causality analysis
makes it possible to determine close causal groups that simultaneously
affect other factors. Biclustering (G. Silva et al., 2024) can allow
for the identification of subgroups of countries and industries with
similar trade behaviors, revealing hidden trade patterns and depen-
dencies. This approach could improve our understanding of how trade
clusters respond to global shocks, aiding policymakers in optimizing
trade agreements. Investigating biclustering in trade networks would
enhance the analytical depth beyond traditional clustering methods,
potentially uncovering new strategic trade insights.

Recent network-based approaches to international trade and Global
Value Chains (GVCs) have mapped the architecture of globalization and
documented salient topological regularities, but typically in single-layer
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or sector-specific settings (Liu et al., 2025). Kali and Reyes (2007) that
a country’s structural position in the global trade network — beyond
trade volumes — matters for growth, yet their analysis is single-layer and
relies on two cross-sections (1992, 1998), without modeling temporal
causality among structural indicators (Kali and Reyes, 2007). Cerina
et al. (2015) construct the World Input-Output Network is used to char-
acterize the large-scale topology, providing an important benchmark
for system-wide structure but not a multilayer, temporal causal analy-
sis (Cerina et al., 2015). More recently, Piccardi et al. (2024) introduce
a network-based measure of GVC “length”, revealing heterogeneous,
geography-sensitive adjustments in global value networks; however,
their focus is on measuring extension and communicability rather than
forecasting or identifying temporal precedence among network indi-
cators (Piccardi et al., 2024). Sectoral contributions, such as analysis
by Russo et al. (2023) of automotive multilayer clusters, uncover twin
dynamics of regionalization and cross-region integration, but remain
industry-focused and descriptive with respect to network evolution
and inter-indicator causality (Russo et al., 2023). Complementing these
strands, the survey by Amador and Cabral (2016) synthesizes drivers
and measures of GVCs but does not prescribe a multilayer, time-ordered
causal modeling framework (Amador and Cabral, 2016).

Our study advances this literature along four fronts. First, we build
a dynamic, multilayer network from Organisation for Economic Co-
operation and Development (OECD) ICIO data at the country—industry
level over a long horizon (1995-2020), enabling system-wide, cross-
sector generality beyond single-sector or short-window analyses (cf.
Russo et al., 2023; Piccardi et al., 2024). Second, we move from
descriptive topology to mechanisms by applying temporal (classical and
Bayesian Granger and instantaneous) causality tests to structural indi-
cators across layers, thereby identifying drivers and propagation path-
ways among countries, industries, and network properties—an aspect
not addressed by the above works. Third, we operationalize structure-
based forecasting of network indicators (out-of-sample,2021-2030),
which extends prior contributions centered on static maps, length
metrics, or cluster detection (Kali and Reyes, 2007; Cerina et al., 2015;
Russo et al., 2023). Fourth, by combining dynamic multilayer analysis
with modularity-based grouping and biclustering, we detect coherent,
co-moving causal groups of indicators and country—industry nodes, pro-
viding a decision-oriented decomposition of systemic change that com-
plements survey-based measurement frameworks (Amador and Cabral,
2016). Together, these features position the paper as a bridge between
topology, temporal causality, and predictive analytics in multilayer
GVC networks.

Building on the literature, the following contributions are made:

C, Revealing the dynamic evolution of the global trade network
structure and its catalysts for change.

C, Disclosing the cascading impacts of trade interconnectedness
and disruptions on international trade connections among na-
tions and sectors.

C; Identifying intervention points for decision-makers, helping con-
tain potential escalations and mitigating the disruption caused
by crises.

We study multilayer trade networks (country x industry X time),
which capture cross-industry interdependencies more fully than single-
layer representations. (C,). This approach enables researchers to exam-
ine how changes in one sector or country can ripple through various
layers of the trade network, providing a more realistic representation of
the intricate global economic mechanism (C,). The multilayer structure
also facilitates the identification of hidden patterns and relationships
that may not be apparent when individual layers in isolation are being
examined. This enhanced analytical capability is particularly valuable
for understanding the cascading effects of economic disruptions and
policy changes across sectors and nations, ultimately leading to more
informed decision-making in international trade policies and strategies
(C3).
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3. Data and methods

We examined the OECD ICIO multilayer trade network between
1995 and 2020. We calculated the temporal evolution of structural
network-, industry- and country-level node indicators on the multilayer
network during this period. We determined changes in the role of
sectors and countries over time and then used these to create time
series to examine forecasts and determine causal networks based on
cause-and-effect studies between indicators. We grouped the effects
using clustering and biclustering procedures. Our goal was to determine
which structural factors, which sectors and which countries are the
driving forces of the structural changes (see RQ) and how to map the
temporal dynamics of these changes (see C,-C;).

The research framework of this study is shown in Fig. 1.

3.1. Employed data

The OECD’s ICIO tables (see Fig. 1(a)) map production, consump-
tion, investment, and international trade in goods and services. Eco-
nomic activity and country are split into these tables to show global
economic linkages in detail. ICIO tables have the following main seg-
ments: intermediate use (Z): goods and services used as inputs in
other manufacturing, which shows industry and sector interdependen-
cies within and between countries. In our study, we analyzed this
segment in detail. Final Demand (FD) for goods and services in a
country, which include household consumption, government spending,
investment, and net exports, referencing economic goods and service
consumption. The total worth of an industry or sector’s goods and
services is output (X), which covers intermediate use and FD. This
chapter shows the net effect of taxes and subsidies on production and
comprises indirect taxes such as value-added taxes (VATs) and govern-
ment subsidies to various industries. Value added (VA): an industry or
sector adding value to its intermediate inputs. The gap between output
and intermediate use represents the contribution of labor and capital
to production.

3.1.1. Data collection and preparation

In this study, we used mainly the intermediate use (Z) segment to
construct a multilayer dynamic network, and examined its structure,
industry, and country-level changes. The edge list of the dynamic
multilayer data table, which served as the basis for the analysis, was
encoded as follows:

Year | From.Sector | From.Country | To.Sector | To.Country | Value

Instead of country and industry codes, we used numbered IDs, and
the lists of country and sectorial codes are shown in Tables G.9-G.10.
An example of a data row is as follows:

19951 1]1 2] 8.5029

This means that in 1995, from country 1 (Argentina, ARG), the
total amount of trade to country 2 (Australia, AUS; see Table G.9), in
sector 1 (agriculture, hunting and forestry, A01_02) was 8.5029 million
USD. The employed data structure enabled us to specify a Dynamic
Multilayer Network (DMN) (see Fig. 1(b)).

To construct the 77 x 45 (countries xindustries) dynamic panel,
we harmonized ICIO flows to the OECD 45-industry (ISIC Rev.4) ag-
gregate using the official concordances and the back-casted, balanced
time series that mitigate reclassifications and vintage breaks (Yamano
et al., 2023). The residual share of missing entries was negligible;
accordingly, no ad-hoc imputation was applied. To improve robustness,
we excluded annual bilateral industry flows below USD 1 million,
since very small cells in multi-country IO tables are disproportion-
ately affected by confidentiality treatment, balancing residuals, and
rounding noise. This conservative sparsification removes negligible
aggregate value but materially improves the signal-to-noise ratio for
temporal forecasting and causality analysis, while preserving temporal
comparability where OECD flags structural breaks.
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Fig. 1. Research framework.

We extend the dynamic multilayer network with two additional
ICIO blocks. (i) The value-added (VA) matrix, available as Year x
(Country x Industry), is modeled as an “income” layer in where each
country-industry node directs its value added to a synthetic Domestic-
Income node of its own country. (ii) The Final-Demand (FD) tensor
(Year x (Country x Industry) x Final-User Country) constitutes a “de-
mand” layer whose edges run from producing country—industry nodes
to final consumer countries. Together with the intermediate-use (Z)
layer, which yields a three-layer Supply-Demand-Income multiplex
observed from 1995 to 2020. All network and node indicators are com-
puted for each layer separately, allowing straightforward robustness
checks of Z-based results against FD and VA perspectives.

3.1.2. Specification of multidimensional network- and node-level datasets

After constructing the DMN, we specified three types of datasets
for further examination. We calculated structural network properties
for each year. These results were stored in a 2D data table (see Fig.
1(c)), where the columns denote the calculated structural properties of
the network and the rows denoted the given years. Utilizing the con-
structed table, we analyzed the structural changes in the trade network.
Similarly, a 3D data table was constructed, where the dimensions were
industries (sectors), (aggregated) node indicators and years 1(e). We
also created an aggregated data table for countries. The proposed 3D
dataset allows us to answer the following question: How much does the
change in the role of different industries depends on other industries
and on what extently do these characteristics move together? Finally,
we created a 4D dataset, where the dimensions are country, industry,
and node property under study, and time (see Fig. 1(f)). In this case,
we obtained answers to the question of how countries’ trade in different
sectors changes over time.

3.2. Employed methods

To answer the research question posed (see RQ), it was necessary
to employ several methods. First, we calculated the time changes and
forecasts in the network and node indicators of the dynamic multilayer
trade network (see Fig. 1(d-f) and Section 3.2.3). However, we grouped
these factors to determine which countries and sectors have similar
structural indicators (see Sections 3.2.2 and 3.2.4). We then analyzed
the time series obtained for the network and node indicators using
Granger causality tests (see Fig. 1(h) and Section 3.2.5). On the basis
of the results of the causality studies, we mapped the causal networks
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between both structural and industrial and country-level indicators (see
Fig. 1(h)). We grouped the relationships by biclustering procedures
(see Fig. 1(g-h)), while using module search procedures, we identified
those indicator groups with closer relationships (see Fig. 1(h) and
Section 3.2.6). Next, we determined the mechanisms of action between
the indicators (see Fig. 1(i)).

3.2.1. The representation of dynamic multilayer trade network

A dynamic multilayer (trade) network is a triplet, G(r) = (V (¢), E(1),
W (1)), where vertices (V (¢)) are organized into multiple layers (L) in
time + € T and each node (vertex) corresponds to an actor (A(z)),
where the same actor at time ¢ can be mapped to nodes in different
layers. Formally, V (r) C A(r) X L. E(¥) C V(r) X V (¢) is set of undirected
edges between two vertices at time . W(r) : E(f) —» R* represents
the weights of each edges at time 7. A dynamic edge is represented
as having the following four members: ¢;, ;,(t) = (¢;(t),1,,a;("),1,); the
weight of a dynamic edge is w(e;, ;,() € R*, where, in this study,
teT :={1995,...,2020}, a;,a; € A are exporters (i), and importers (j)
actor (i.e., country), /;,/; € L are the layers of exporters and importers,
respectively; ¢;, = (a;,1,) € V is the node, where a; € A is the actor in
layer I, € L. If we fix the year of 7, then we obtain a static multilayer
trade network.

3.2.2. Explored node-level properties

The employed centrality measures can be calculated for each coun-
try in all industrial layers and can be aggregated at the industrial or
country level. These indicators jointly offer an extensive perspective
on the roles and influences of many countries within the multilay-
ered trade network. Utilizing these indicators enables the analysis of
countries’ interactions in trade, economic robustness, and strategic
standing within the global trade framework. The time-series analysis
of these indicators can reveal how the role of countries or sectors has
evolved over time. Table B.6 in the Appendix shows the mathematical
formulation of the employed node-level indicators. Table 1 summarizes
the economic insights the employed node-level indicators.

Our selection of node-level metrics is driven by economic rel-
evance rather than methodological exhaustiveness. Degree (in/out;
DCI/DCO) captures partner diversification — the export market access
and redundancy versus procurement breadth and exposure — while
strength (out/in; SCO/SCI) measures realized trade intensity and eco-
nomic weight, with SCO-SCI informing external balance and current-
account sustainability. BC quantifies intermediation power over trade
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Table 1

Node-level indicators with economic interpretations.
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Economic
dimension

Indicators

Economic meaning and interpretation

Market Access
and Trade
Diversification

Indegree Centrality (DCI)
Outdegree Centrality (DCO)
Degree Centrality (DC)

Measures a country’s trade relationship diversification and market access breadth.
High DCI indicates strong import demand and supplier dependency, signaling
domestic market attractiveness but potential vulnerability to supply disruptions.
High DCO reflects robust export capacity and market penetration across multiple
destinations, indicating competitive advantage and reduced dependency on single
markets. Together, they reveal a country’s integration into global supply chains
and resilience through diversification.

Economic Scale
and Trade Volume

Instrength Centrality (SCI)
Outstrength Centrality (SCO)

Captures a country’s actual economic weight and trade intensity in global
markets. High SCI represents substantial import dependency and domestic
consumption capacity, indicating economic size but potential external
vulnerability during supply chain disruptions. High SCO demonstrates
export-oriented economic strength and international competitiveness, contributing
to GDP growth and foreign exchange earnings. The difference (SCO-SCI) reveals
trade balance dynamics, crucial for understanding current account sustainability
and economic stability.

Strategic Trade
Position and
Market Control

Betweenness Centrality (BC)
Closeness Centrality (CC)

Measures a country’s strategic importance in global trade routes and market
accessibility. High BC indicates critical intermediary role, enabling control over
trade flows and potential for rent extraction through gateway positions. Countries
with high BC can influence global supply chains and may benefit from trade
disruptions affecting competitors. High CC ensures efficient access to diverse
trading partners, reducing transaction costs and enhancing trade opportunities,
particularly valuable during market volatility and crisis periods.

Economic
Influence and
Network Power

Eigenvector Centrality (EC)
PagRank Centrality (PRC)

Evaluates a country’s influence by considering not just connection quantity but
partner quality and importance. High values indicate trade relationships with
economically powerful nations, enhancing technological spillovers, knowledge
transfer, and economic stability through association with stable partners. This is
particularly crucial for developing countries seeking technology transfer and for
developed nations maintaining leadership in innovation networks. Such positions
provide resilience during economic downturns through diversified high-quality
partnerships.

Hub Economy
Functions

Authority Centrality (AUT)
Hubness Centrality (HUB)

Measures a country’s role as a trusted trade node in global commerce. High AUT
signifies reputation as a reliable export destination, often associated with
high-quality goods, advanced manufacturing, or specialized services, creating
premium positioning and pricing power. High HUB indicates major exporter
status to influential importers, suggesting critical supply chain importance and
potential for economic leverage. Together, they identify countries that serve as
essential connectors in global trade networks, with significant bargaining power
and economic influence.

Industrial
Specialization and
Risk
Concentration

Homophily (HOM)

Measures the percentage of a country’s trade relationships within the same
industry, revealing specialization patterns and associated risks. High homophily
indicates strong industrial specialization and competitive advantage in specific
sectors, potentially leading to higher productivity and export revenues. However,
it also signals vulnerability to industry-specific shocks, technological disruptions,

or demand shifts. Low homophily reflects diversified trade portfolios and risk

management strategies, providing stability during sector-specific crises but
potentially sacrificing specialization benefits and economies of scale.

routes (gatekeeping, rerouting options, rent extraction), and close-
ness (CC) reflects the average market access costs and speed of ad-
justment, key for resilience and price pass-through. Eigenvector and
PageRank (EC/PRC) measure embeddedness in “high-quality” neigh-
borhoods - the importance of partners’ partners — linked to demand
stability, technology spillovers, and sanctions contagion. Hub/authority
(HUB/AUT) disentangles upstream vs downstream roles in GVCs (ma-
jor suppliers to influential buyers vs trusted destinations), informing
upgrading, reshoring, and supplier diversification strategies. Finally,
homophily (HOM) gauges specialization versus diversification in a
country-industry trade portfolio, balancing productivity gains against
sector-specific shock vulnerability. Table 1 synthesizes these economic
interpretations.

3.2.3. Explored network-level properties

In addition to the aggregation of node-level indicators for indus-
tries and the network, it is also possible to calculate network-level
indicators.

We calculate network centralization by first determining the central-
ity values of each node. Afterward, we calculate the difference between
the highest centrality value and the centrality values of all the other
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nodes. Finally, we sum these differences and divide them by the sum of
the maximum possible differences to obtain the centrality value of the
network. A formal description of network-level indicators are provided
in Table C.7 in Appendix. The Table 2 shows a brief summary of the
economic insight into the employed network-level indicators.

3.2.4. Similarity measures of layers

For each similarity indicator, the industry-by-industry matrices of a
given similarity is specified for each year, the average values are also
determined annually. Table 3 summarizes the economic insight of the
employed layer similarity measures.

If these similarity metrics increase over time, then it suggests a
trend toward greater interconnectedness and uniformity across indus-
tries, indicating that countries are aligning their trading strategies and
reinforcing established partnerships. Conversely, a decreasing trend
may imply a growing segmentation of the trading landscape, where
industries become more isolated from each other, possibly driven by
shifts in economic policy, competitive dynamics, or global market
changes, leading to potential inefficiencies and disruptions in economic
integration. The formal descriptions of the similarity indicators are in
Table F.8 in Appendix.
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Table 2

Network-level indicators with economic interpretations.
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Economic
dimension

Indicators

Economic meaning and interpretation

Market Integration
and Connectivity

Density (Dens)

Average Path Length (AVPL)
Multilayer Average Path Length
(MLAVPL)

Measures the degree of global economic integration and trade efficiency. High
density indicates tightly interconnected markets with extensive trade
relationships, fostering collaboration and knowledge spillovers but potentially
increasing systemic risk. Low AVPL suggests efficient trade routes and reduced
transaction costs, enabling rapid price arbitrage and market equilibration.
MLAVPL captures cross-industry connectivity, revealing how efficiently goods and
services flow between sectors, crucial for understanding supply chain
optimization and industrial interdependencies during economic shocks.

Network
Resilience and
Stability

Transitivity (Trans)
Random Resiliency (RRes)
Systematic Resiliency (SRes)

Evaluates the robustness of global trade networks against disruptions. High
transitivity indicates clustering among trading partners, providing alternative
trade routes and reducing vulnerability to single-point failures. This creates
redundancy that protects against supply chain disruptions. Random resilience
measures network stability against unexpected failures (natural disasters, political
instability), while systematic resilience evaluates vulnerability to targeted attacks
or coordinated disruptions (trade wars, sanctions). Together, they assess the
global economy’s capacity to maintain trade flows during various crisis scenarios.

Trade
Concentration and
Market Power

Indegree Centralization (DZI)
Outdegree Centralization (DZO)
Betweenness Centralization (BZ)
PagRank Centralization (PRZ)

Measures the concentration of trade power and potential market dominance. High
DZI indicates few countries dominate as major importers, creating dependency
relationships and potential bottlenecks. High DZO suggests export market
concentration, where few countries control global supply, increasing market
power but creating vulnerability points. High BZ reveals concentrated control
over trade routes by specific nations, enabling strategic leverage and potential for
market manipulation. High PRZ indicates overall economic influence
concentration, suggesting unequal global trade relationships and potential for
economic coercion or beneficial spillovers from dominant economies.

Economic
Efficiency and
Performance

Average Local Efficiency (ALE)
Global Efficiency (GLE)
Reach Club Coefficient (RCC)

Assesses the economic efficiency of trade networks and elite country interactions.
High ALE indicates efficient regional trade distribution, suggesting well-developed
local supply chains and reduced logistics costs. High GLE demonstrates that
goods and services flow efficiently across the entire network through few
intermediaries, minimizing transaction costs and enabling rapid market responses.
High RCC shows that economically powerful countries trade intensively among
themselves, creating an exclusive “rich club” that may drive global economic
trends but potentially excludes smaller economies from premium trade
opportunities and technology transfer.

Market Structure
and Competition

Assortativity (Assort)
Modularity (Mod)
Multilayer Global Clustering
Coefficient (MIGIClu)

Reveals the competitive structure and fragmentation of global markets. Positive
assortativity indicates that countries with similar trade capacities preferentially
trade together, suggesting stable market tiers but potential for reduced
competition and innovation. High modularity reveals distinct trading blocs or
communities with dense internal trade but sparse inter-community connections,
indicating regional integration but global fragmentation that may impede
efficiency and increase trade barriers. High MIGIClu shows strong cross-industry
clustering, facilitating industrial cooperation and technology spillovers but
potentially creating sector-specific vulnerabilities during industry-wide disruptions.

Trade Balance and
Asymmetries

Mean of Vertex Asymmetries
(MVA)
Closeness Centralication (CZ)

Captures trade imbalances and accessibility inequalities in the global economy.
High MVA indicates widespread trade imbalances across countries, suggesting
structural economic asymmetries that may lead to current account sustainability
issues, currency pressures, and potential for trade disputes. This reflects
underlying competitiveness differences and economic development gaps. High CZ
shows unequal access to global markets, where few countries enjoy superior
connectivity while others face higher trade costs and limited market access,
potentially perpetuating economic inequalities and limiting development
opportunities for peripheral economies.

3.2.5. Employed forecasting methods and causality measures

Between 2021 and 2030, various network indicators were predicted
via the Autoregressive Integrated Moving Average (ARIMA) model.
The forecast obviously cannot account for the aftermath of COVID-
19, the consequences of the Russia—Ukraine conflict, or the effects
of the trade wars of the Trump administration. However, we obtain
an important picture of what would have happened had these effects
did not occur. The Granger causality and instantaneous causality are
employed to determine the effect mechanism of structural and network-
level indicators. Table 4 summarizes the economic insights of the
applied methods.

To validate classical Granger causality tests three Bayesian ap-
proaches are also applied, such as BVAR with Minnesota Priors (Ni
and Sun, 2003), MCMC analysis Bayesian Estimation [jackman2000
estimation] and BFA (Oravecz and Vandekerckhove, 2024).
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These four approaches form a comprehensive methodological frame-
work that addresses different aspects of Granger causality analysis
while providing mutual validation. The classical Vector Autoregressive
(VAR) method establishes the foundational statistical benchmark with
its well-understood asymptotic properties, serving as the reference
point for comparison. The BVAR approach enhances estimation pre-
cision through structured priors, particularly valuable when dealing
with limited sample sizes or high-dimensional systems where classical
methods may suffer from overfitting. The MCMC Bayesian method pro-
vides the most comprehensive uncertainty quantification by generating
a full posterior distributions, allowing for nuanced probabilistic state-
ments about causality relationships and their associated uncertainty.
Finally, the BFA offers direct model comparison capabilities, provid-
ing interpretable evidence measures for competing hypotheses about
causal relationships. We considered a relationship to be Granger causal
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Table 3

Layer similarity measures with economic interpretations.
Economic Indicators
dimension

Economic meaning and interpretation

Cross-Industry
Market Structure
and Integration

Node Similarity (NS)
Edge Similarity (ES)

Measures the degree of cross-sectoral market integration and trading partner
consistency. High NS indicates that countries maintain similar trading partners
across different industries, suggesting integrated business relationships, economies
of scope, and diversified industrial strategies. This reflects mature economic
relationships where countries develop comprehensive trade partnerships spanning
multiple sectors. High ES reveals consistent trade flows and partnership intensities
across industries, indicating stable supply chain relationships and reduced
transaction costs through established business networks. Together, they signal
economic integration depth and partnership stability across industrial boundaries.

Industrial Pearson Correlation of Degree Evaluates countries’ diversification strategies and vulnerability to sector-specific
Diversification Centralities (PD) shocks. High PD suggests that countries maintain similar trade positions across
and Risk Shortest Path Distance (SP) different industries, indicating either successful diversification strategies or
Management concerning over-specialization in similar market niches. This can provide stability
through balanced industrial portfolios but may also indicate lack of comparative
advantage specialization. Low SP between industries indicates efficient
cross-sectoral trade connections, enabling rapid resource reallocation and
industrial adaptation during economic transitions. This flexibility is crucial for
countries adjusting to technological changes or shifting global demand patterns.
Economic Combined Pattern Analysis When similarity measures move together over time, it indicates increasing
Coherence and economic coherence where countries align their trading strategies across
Strategic industries, suggesting either successful economic integration policies or
Alignment concerning loss of competitive differentiation. Increasing similarity patterns may

reflect beneficial standardization and efficiency gains through unified trade
policies, but could also signal reduced innovation and competitive dynamics.
Conversely, decreasing similarity trends may indicate beneficial specialization and
comparative advantage development, but could also suggest concerning market
fragmentation and reduced economic cooperation, potentially leading to trade

inefficiencies and increased vulnerability to external shocks.

Table 4
Comparison of forecasting methods and causality measures: economic interpretation.
Method Economic purpose Economic interpretation Policy implications Limitations
ARIMA Predict future trade Extrapolates historical trends Enables policymakers to Cannot incorporate structural
Forecasting network structures to identify what would distinguish between natural breaks or unprecedented
under baseline happen without external economic evolution and events
conditions shocks (COVID-19, trade wars, crisis-induced changes. Helps
geopolitical conflicts). identify deviations from
Provides counterfactual expected trajectories.
scenarios for policy
evaluation.
Granger Identify temporal Reveals which Critical for early warning Assumes linear relationships;
Causality precedence countries/industries act as systems. Helps identify which sensitive to lag selection;
validated by relationships between “early indicators” of global countries to monitor for correlation # true causation
Bayesian countries and industries trade changes. Shows cascade predicting broader trade
approaches in trade dynamics mechanisms where changes in disruptions. Informs strategic
one actor predict changes in timing of interventions.
others with specific time lags.
Instantaneous Capture simultaneous Identifies countries and Essential for coordinated Cannot establish temporal
Causality co-movements in trade industries that respond policy responses during crises. direction of influence; may

patterns during

synchronously to global

Helps identify countries that

capture spurious correlations

economic shocks

economic events. Reveals

structural interdependencies
and shared vulnerabilities in

real-time.

need simultaneous support or
face similar risks during
global disruptions.

between two time series at a given lag only if a causal relationship
could be demonstrated between the time series by all methods.

The setting of ARIMA and causality analysis is detailed in Appendix
D. To analyze the relationships and precedence relations between
time series of node properties, layer with respect to similarity values
and network properties, we specified a causality graph to depict the
relationships among properties, where a node represents a given prop-
erty, and an edge exists between nodes if causality relations between
properties exist. The lags were noted, but we did not use them as
weights. Therefore, we obtained a directed unweighted causality graph
for Granger causality and an undirected instantaneous causality graph.
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3.2.6. Employed clustering and biclustering methods

By clustering the resulting correlation and causal graphs with
community-based modularity detection, we determined modules in
which communities provide the set of indicators where there are denser
causal relationships between nodes than there are between separate
modules. We also used a biclustering method to cluster edges between
nodes to identify where denser causal relationships exist.

Clustering partitions nodes into communities with denser— than-
expected internal ties, whereas biclustering simultaneously groups
nodes and the edges between them to uncover edge-dense subma-
trices. In our directed causality network, community detection (Lei-
den/Louvain/Infomap) reveals sets of indicators or country— industry
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Table 5
Comparison of clustering and biclustering methods: Economic interpretation.
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Method Economic purpose

Economic interpretation What it cannot capture alone

Modularity-based
Community Detection

Identify trade communities and
economic blocs based on dense
internal connections

Reveals natural economic
partnerships and regional trade
clusters. High modularity
indicates fragmented global trade;
low modularity suggests
integrated global economy.

Cannot identify temporal
dynamics or causal
mechanisms within
communities. Static view of
trade relationships.

Generalized
Network-based
Dimensionality Analysis
(GNDA)

Automatically discover industrial
groups with similar temporal
trade patterns without
pre-specifying cluster numbers

Groups industries by their
adaptive capacity and resilience
patterns. Identifies which sectors
move together during economic
cycles and crises.

Cannot reveal why industries
cluster together or predict
cross-cluster influences.

iterative Binary
Biclustering of Gene
sets (iBBiG)

Simultaneously cluster
countries/industries AND their
causal relationships to identify
dense interaction patterns

Uncovers hidden economic
interdependencies where specific
country-industry combinations
systematically influence others.
Reveals transmission mechanisms
of economic shocks.

Cannot determine community
structure or long-term
temporal trends. Focuses only
on causal density.

nodes with concentrated interrelations; iBBiG biclustering comple-
ments (Pontes et al., 2015) this by isolating cohesive sets of causal
links (origin-target pairs) that co-move and co-predict with similar
lags (Castanho et al., 2024). Using both methods allows us identify who
forms communities and which specific causal links transmit shocks.

The applied clustering and biclustering methods are briefly intro-
duced in Table 5

By combining (Bayesian-validated) Granger and instantaneous causal-
ity with biclustering, we identify edge-dense causal submatrices —
i.e., groups of causal relations that co-move and co-predict with co-
herent lags. Unlike community detection, which clusters nodes, our
biclustering clusters the causal links themselves; this exposes concrete
propagation channels that static centralities or GVC participation in-
dices cannot be revealed. The joint method tells policymakers not
only who is important, but which specific cross-industry/cross-country
relations move together and in what temporal order, enabling targeted
and time-staged interventions on the small set of links that transmit
shocks fastest.

The technical details of community detection and biclustering are
in Appendix E.

4. Results

4.1. Temporal analysis of the structure of multilayer dynamic trade net-
works

Fig. 2 shows the temporal changes in the multilayer network prop-
erties. We project the time series of structural indicators utilizing
the ARIMA model from 2021 to 2030, and we also establish a 95%
confidence interval for prediction. To ensure the prediction, we also
calculated the forecasts with Bayesian ARIMA model (see Fig. A.10 in
the Appendix). The results of the classical and Bayesian approaches
differ only minimally. To layer-specific robustness checks corroborate
our main findings, we recomputed the core indicators on the FD-
and VA-layers shows to check both demand-driven flows and value-
added allocation exhibit the same long-run rise in centralization and
the same ebb-and-flow of modular fragmentation identified in the Z-
layer. However, in this study, we only compare the sector-specific Value
Added (VA) and country-specific FD values with the centrality values
calculated on the Z-layers.

Although the forecasts do not show what the impact of, for example,
Trump’s protective tariffs or the prolongation of the Russia-Ukraine
conflict will be, causality analysis can show which structural indicators
move at the same time and which ones exhibit a time lag. The causal
relationship among the network properties are shown in Fig. 3. Fig.
3(a-b) shows heatmaps and biclusters of Granger (a) and instantaneous
(b) causalities according to the network features. The darker reddish
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cells in Fig. 3(a) indicate longer lags; however, in the context of
instantaneous causality, there is no temporal lag, with only significant
cells depicted in dark red. In both causalities, two biclusters can be
identified, with only the first being significant for both rows and
columns. Fig. 3(c) illustrates a directed Granger causality graph with
a tree layout. On the basis of this arrangement and clusterings, we
create a block diagram, which is illustrated in Fig. 3(e). Fig. 3(d) depicts
an undirected graph with instantaneous causality across properties.
The color of the nodes signifies the community identified by Leiden’s
community-based modularity detection technique. The dimensions of
the nodes correspond to the DC of each node, with dark red edges
representing members of the first bicluster (significant) and dark green
edges denoting members of the second bicluster (nonsignificant). In
accordance with Granger causality and the specified tree architecture,
three levels can be identified to minimize feedback, as shown in Fig.
3(e).

Fig. 3 presents the comprehensive causality analysis framework for
multilayer trade network structural indicators from 1995-2020. To de-
termine the effect mechanism of each structural indicator, we initially
establish Granger and instantaneous causality (see Fig. 3(a-b)). We
cluster the structural features by Leiden’s modularity-based community
detection (see Fig. 3(c—d)) and by biclustering the relationships (see
Fig. 3(a—d)), and finally, we subsequently organize the procedures to
minimize the level of feedback among structural elements (see Fig.
3(e)). Ultimately, we obtain a mechanism graph illustrating both the
comovements (i.e., ~instantaneous correlations) and Granger causal
linkages (i.e.,~ precedence) among structural components. The weights
in Fig. 3(e) inscribed on the arrows denote the average duration of lags
among the structural variables.

Specifically, Fig. 3(a) shows Granger causality relationships with lag
structure, where darker red cells indicate longer temporal lags (0=no
significance, 1-5=year lags) between structural indicators. Key abbre-
viations: DZI/DZO—measuring trade concentration, BZ—intermediary
control, CZ—market accessibility, PRZ—influence concentration, AVPL—
trade route efficiency, ALE/GLE—regional/global trade efficiency, Trans
(Transitivity—clustering tendency), RRes/SRes—network robustness,
MVA—trade balance inequalities, RCC—elite country interactions, Mod.*
(Various modularity measures using different algorithms—community
structure), Mean.NS/ES/PD/SP—cross-industry integration patterns.
Fig. 3(b) displays instantaneous causality (simultaneous co-movements)
where dark red dots indicate significant relationships. Fig. 3(c) and
(d) present clustered causality graphs with community detection re-
sults, where node colors represent different communities identified
by Leiden’s modularity-based algorithm, and edge colors distinguish
significant (dark red) versus nonsignificant (dark green) biclusters.
Fig. 3(e) synthesizes the temporal mechanism into a three-tier hier-
archical structure: Tier 1 (robustness indicators: Trans, SRes, RCC,
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Fig. 2. Network properties in time (forecast with ARIMA, 95% confidence interval).

MIGIClu, MLAVPL, Mod.Louvain, Mean.NS) responds first to economic
disruptions; Tier 2 (concentration indicators: DZI, CZ, AVPL, RRes,
MVA, Mean.ES/PD/SP) follows with 1.35-year average lag; Tier 3
(structural integration indicators: Assortativity, DZO, BZ, PRZ, Dens,
ALE, GLE, Mod.RW.W (Modularity random walk (weighted)/Infomap/
Leiden, Mean.SP)) responds last with 3.31-year average lag. Bidi-
rectional arrows indicate feedback effects with 1.26-year reverse lag
between middle tiers.

4.2. Industrial causality analysis and temporal pattern identification

Fig. 4 shows the main centrality values of the top ten industries.
The top 10 industries, in this case, are the 10 largest industries with a
given centrality. Fig. 4(a) shows the change in export volume, which
is expressed in terms of SCO centrality. The change in trade balance,
which is the difference between export and import volumes, and ex-
pressed in terms of centralities, is SCO-SCI and shown in Fig. 4(c).
Additional relative centrality values for the top 10 industries are shown
in Fig. 4(b,d-g). The relative centrality for each industry is calculated
by dividing the industry centrality value by that of all industries. To
validate the results we also calculated the relative sectorial added
values (see Fig. 4(h)).

To determine the typical industrial trends, we cluster the node-
level indicators by employing the GNDA approach. Fig. 5 shows the
temporal patterns of the node-level indicators aggregated by industry.
The employed GNDA identifies the number of temporal characteristics
(i.e., cluster centers). The temporal patterns of cluster centers shows
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how the aggregate characteristics of the industries in a given group
have changed on average. All industries that belong to such an aggre-
gate (latent) characteristic are listed in the legend. To ensure that the
forecasts the Bayesian version of ARIMA models are also shown in Fig.
A.11 in Appendix. The results of the classical and Bayesian approaches
differ only minimally.

We analyze six indicators. First, DCO illustrates the temporal pro-
gression of the quantity of export partners, indicating the average
number of buyers a country possesses within an industry (see Fig. 5(a)).
The second indicator (see Fig. 5(b)) examined is homophily, which
shows what percentages of countries’ import and export relationships
in a given industry originate from that industry. This indicator charac-
terizes the structure of the industry. The development of homophily
over time can show how much the industry is integrated into the
international market. If the indicator increases, then it may indicate
that the trade relationships between the actors in the given industry
are strengthening, while if it decreases, then the opposite situation
may occur. The third indicator analyzed is modularity (see Fig. 5(c)).
Modularity demonstrates the significant separation of clusters, or mod-
ules (communities), inside a network structure. Assessing modularity
helps determine the degree to which specific countries create communi-
ties within particular industries. The temporal variation in modularity
enables the observation of how linkages among industry actors have
evolved into communities. Fig. 5 (e-g) illustrate the time evolution of
most important industrial centrality indicators, such as EC (e), PRC (f),
and BC (g). While EC and PRC demonstrate the role of industries inside
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Fig. 3. Causalities between network properties with detailed methodological framework and indicator explanations.

the network, BC illustrates their intermediary function. To validate the
change in centrality values the added values are also calculated (h).

The final results of the causality analysis are shown in Fig. 6. This
calculation follows the steps of causality analysis on network-level
indicators; see Fig. 3. First, the Granger and instantaneous causalities
are calculated. Causality graphs are specified and aligned as a tree
layout. Each level of trees is grouped into a block, and the average
time lag between the pair of elements from a two distinct blocks is
calculated.

4.3. Country-level analysis

Fig. 7 shows the top ten countries with the greatest centrality
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values. The SCO in Fig. 7(a) actually shows the volume of exports
considering the ten largest exporters, whereas Fig. 7(c) shows the
trade balance SCO-SCI=export-import in time. Fig. 7(b, d-g) shows the
ten most important countries with the largest relative PageRank, hub,
authority, betweenness and eigenvector centrality values, where the
relative centrality value of a given country is calculated by dividing
the summed centrality values of all industries of that country by the
sum of the centrality values of all industries of all countries. In this
way, the sum of the relative centrality values of the top ten countries
with the greatest values indicate their role compared to that of all
other countries. The change in values over time gives the change in
the relative position of the top ten countries. To control the changes in
centralities we calculate the changes in FDs (see Fig. 7(h)).
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Fig. 4. Centrality values of the top 10 industries.

Fig. 8 shows the impact mechanism of changes in all trade activi-
ties (import+export with Schwarz Criterion (SC)) measured. The map
shows OECD countries. The size of the nodes is proportional to the
total trade activity (imports + exports), which is measured via strength
centrality. The colors of the nodes indicate the causal group into which
each country falls. The first causal relationship is for countries whose
trade changes first. The last causal relationship is for countries whose
trade changes last. By biclustering the causal relations, one significant
group of relationships can be identified, which are indicated by the
colors of the arrows.

Fig. 8 maps the temporal propagation of trade volume, which
changes across 77 countries from 1995-2020, revealing systematic pat-
terns in how global trade disruptions cascade through different national
economies. Fig. 8(a) presents the clustered Granger causality network
where nodes represent country size proportionally to total trade activity
(imports + exports measured by strength centrality), and node colors
indicate causal group membership based on response timing. Dark red
arrows represent significant causal relationships (bicluster 1) where
changes in one country’s trade volume predict changes in another
with specific time lags, while light green arrows show nonsignificant
relationships (bicluster 2). Fig. 8(b) synthesizes the effect mechanism
into four hierarchical tiers with distinct economic characteristics. Fig. 8
shows that the change in trade occurs simultaneously in most countries.
Such changes can be divided into four consecutive causal groups in
time. Trade changes first appear in Cote d’Ivoire, Estonia, United
Kingdom, Hong Kong, China, Croatia, Iceland, Korea, New Zealand,
Portugal, Turkey. Afterward, at average, in 2.25 years, the larger set
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of trade countries is Argentina, Belgium, Bangladesh, Bulgaria, Be-
larus, Brunei Darussalam, Switzerland, China (People’s Republic of),
Cameroon, Colombia, Costa Rica, Czechia, Egypt, Finland, Indonesia,
Ireland, Israel, Japan, Kazakhstan, Cambodia, Lao (People’s Democratic
Republic), Lithuania, Morocco, Malta, Myanmar, Malaysia, Nigeria,
Pakistan, Peru, Philippines, Romania, Russian Federation, Saudi Arabia,
Senegal, Slovakia, Vietnam, rest of the world. A change in a larger
group of countries can also be observed, on average, 2.94 years later,
such as Australia, Austria, Brazil, Canada, Chile, Cyprus, Germany,
Denmark, Spain, France, Greece, Hungary, India, Italy, Jordan, Lux-
embourg, Latvia, Mexico, Netherlands, Norway, Poland, Singapore,
Slovenia, Thailand, Tunisia, Chinese Taipei, United States, South Africa.
A backlash can also be observed between the two middle groups with
an average delay of 1.92 years. The last group includes a total of 2
countries, namely Sweden, Ukraine, which are those countries where
export/import changes in trade appear the latest in the considered
period.

5. Discussion
5.1. Structural changes in the trade network

Concentration and market power. The steady rise of importer and
exporter centralization and of intermediation power (degree and be-
tweenness centralizations; PageRank centralization; “rich-club” inten-
sity) signals a persistent concentration of global trade in a relatively
small set of hub economies. Economically, this implies growing bar-
gaining power for core countries and lead firms, stronger price-setting
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Fig. 6. Industrial effect mechanisms based on causality and cluster analysis with economic interpretation of sectoral groupings.

capacity along GVCs, and a greater potential for policy shocks in a
few jurisdictions to transmit widely. The timing is consistent with
welldocumented structural drivers: the post-1995 offshoring boom, the
2001 World Trade Organization (WTO) accession of China, and the
scaling of platform-type supply chains. Nonnetwork evidence aligns
with this pattern: the “export superstars” phenomenon indicates a
concentration of exports in a small share of firms (Freund and Pierola,
2015; Rowley, 2024), while the “Great Convergence” describes how
Information and Communications Technology (ICT) lowered coordina-
tion costs and enabled hub-and-spoke GVCs led by a few economies and
firms (Baldwin, 2016). China’s increasing systemic centrality in Fig. 2
is consistent with macro evidence on the “China shock” and its broad
real-economy repercussions (Autor et al., 2016; Dorn and Levell, 2024).
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Efficiency, trade costs, and chain architecture. The decline in aver-
age (multilayer) path lengths and the rise in local and global efficiency
indicate economically shorter and more reliable trade routes, consistent
with falling trade costs (logistics, coordination, and information) and
the maturation of production sharing. This is precisely what one would
expect from containerization, ICT diffusion, and the codification of
tasks that enabled fine slicing of value chains (Hummels et al., 2001;
Ren, 2024; Baldwin, 2016). The small but persistent increase in den-
sity further reflects broadening market access and deeper integration.
Microevidence that “time is trade cost” (e.g., delays at the border and
in shipping depress trade disproportionately) provides an independent,
nonnetwork rationale for the shorter effective distances we observe (Liu
and Yue, 2013). In economic terms, Fig. 2 suggests that, up to the
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mid-2010s, firms optimized to minimize coordination and leadtime risk
while leveraging larger supplier networks.

Regionalization vs. global integration. Modularity and assortativ-
ity patterns capture the tension between regionalization and global
integration. Assortativity trending more negative is consistent with
a hub-and-spoke, core-periphery architecture: highly connected hubs
transact extensively with less connected periphery nodes — a hall-
mark of lead-firm GVCs. Modularity dynamics point to an ebb and
flow between global integration and the re-emergence of regional
blocs. The post-2008 “‘slowbalization” debate emphasized both cyclical
(demand, finance) and structural (policy, technology) drivers of a
slower trade elasticity (Constantinescu et al., 2020). Fig. 2 is consistent
with a period of re-regionalization around the mid-to-late 2010s as
trade policy frictions rose (Evenett, 2019), even as the underlying
technology and logistics fundamentals continued to support efficient
cross-border production. Put differently, the economic forces pushing
toward integration (falling trade costs) and the policy forces push-
ing toward fragmentation (tariffs, screening, compliance divergence)
coexisted during this period.

Resilience and systemic risk. Improvement in random failure re-
silience together with the more modest gains (or plateaus) in targeted-
attack resilience imply that while the trade system became better at
absorbing idiosyncratic disturbances, it remained vulnerable to shocks
concentrated on hubs (e.g., a targeted tariff or a chokepoint disruption).
This is an economic tradeoff familiar in the supply chain management:
efficiency gains from scale and centralization raise exposure to hub-
specific risks. The literature on supply chain risk similarly warns that
the very forces that made GVCs efficient — supplier consolidation, just-
in-time inventories, and hub concentration — also magnifies systemic
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vulnerability to policy and logistical shocks (Baldwin and Freeman,
2022). The patterns in Fig. 2 therefore square with an economic inter-
pretation in which firms optimized for cost and speed during “normal
times”, while policy shocks and crises reveal the nonlinear losses
associated with central-node disruptions.

The counterfactual outlook lacks recent shocks. The ARIMA-based
projections (2021-2030) are a baseline, “no-new-shock” counterfac-
tual. Economically, the forecast of continued efficiency gains (shorter
effective distances), slight additional densification, and mild declines
in modular segmentation suggests that, the absence of new protec-
tionist measures or large geopolitical events, the gravitational pull of
technology, scale, and learned coordination would have continued to
deepen integration and diffuse influence marginally away from the very
top players. This counterfactual complements non-network assessments
that attribute much of the post-2016 deceleration to policy and uncer-
tainty rather than to a reversal of the technological and organizational
underpinnings of GVCs (Constantinescu et al., 2020). In other words,
Fig. 2’s forecasts imply that the observed fragmentation of recent years
is not inevitable; it is contingent on policy and shock realizations rather
than being dictated by economic fundamentals alone (Milberg et al.,
2024).

As shown in Fig. 3 most structural changes occur instantaneously
and collectively, with causal mechanism analysis organizing these re-
lationships into three consecutive hierarchical groups. These findings
align with Baldwin and Lopez-Gonzalez (2015)’s observation of “deep
integration” in global value chains, where interconnected production
networks create simultaneous adjustment patterns across multiple eco-
nomic dimensions. The first tier comprises structural indicators reflect-
ing network robustness — transitivity, global clustering coefficients, and
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Fig. 8. Country-level causality effect mechanism of strength centrality (total trade volume) with geographic and economic development patterns.

systematic resilience measures — which change earliest in response
to economic disruptions. This pattern mirrors Autor et al. (2016)’s
findings on the “China shock”, where initial trade policy changes
first affected the structural integrity of manufacturing networks before
cascading to other sectors. From an economic policy perspective, this
suggests that policymakers should monitor network robustness indica-
tors as early warning signals for broader structural changes, as these
measures capture the fundamental stability of trade relationships before
concentration or community patterns begin to shift.

The second tier encompasses centralization and similarity indica-
tors, reflecting changes in market concentration and trading partner
alignment patterns, which respond with an average lag of 1.35 years af-
ter robustness changes. This delayed response supports Melitz (2003)‘s
heterogeneous firm trade model, where aggregate trade patterns emerge
from firm-level adjustments that take time to manifest in network-
wide concentration measures. The third tier includes community struc-
ture indicators (modularity and assortativity) with an average lag
of 3.31 years, representing the longest-term structural adjustments
in trading bloc formation and partnership preferences. This tempo-
ral sequencing contradicts the immediate adjustment assumptions of
standard trade models (Krugman et al., 1980; Mansouri, 2022) but
supports more recent dynamic trade literature emphasizing gradual
adjustment processes (Eaton et al., 2016; Atsebi et al., 2024). Bidirec-
tional causality between the second and third tiers (with a 1.26-year
reverse lag) indicates that community structure changes can also influ-
ence concentration patterns, suggesting that trade bloc formation can
reshape market power dynamics—a finding consistent with Hofmann
et al. (2019)’s analysis of preferential trade agreements’ effects on
multilateral trade patterns. These results provide crucial guidance for
crisis management: robust early intervention during the first phase
can prevent cascading effects, whereas delayed responses may require
addressing all three structural dimensions simultaneously at much
higher economic and political costs.
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5.2. Industrial changes and restructuring

The centrality values shown in Fig. 4 reveal remarkable structural
stability in global trade hierarchies despite major economic disruptions,
suggesting that fundamental comparative advantages and industrial
specialization patterns exhibit strong persistence over time. The dom-
inance of wholesale and retail trade (G), financial services (K), and
basic metals (C24) in export volumes and centrality measures aligns
with Hausmann and Hidalgo (2011)’s economic complexity theory,
which predicts that countries and industries with established capa-
bilities maintain their positions in global value networks. This sta-
bility contradicts the “creative destruction” hypothesis of Schumpeter
(2013), which would predict more dramatic industrial reshuffling fol-
lowing major crises such as the 2008 financial crisis. From a trade
theory perspective, these findings support the Heckscher-Ohlin model’s
prediction of persistent specialization patterns based on factor endow-
ments (Leamer et al., 1995), while challenging newer models that
emphasize rapid industrial transformation through technology adop-
tion (Grossman and Helpman, 1993; Helpman, 2025). The absence of
significant restructuring in PageRank, betweenness, and eigenvector
centralities indicates that core industries maintain their intermediary
roles and influence positions within global supply chains, suggesting
that established trade relationships create substantial switching costs
and network externalities that preserve existing hierarchies even during
periods of economic turbulence. As shown in Fig. 4, industries with
high centrality measures (such as agriculture financial services) also
tend to exhibit high and growing value-added contributions. Never-
theless, the top 10 value added industries incorporate professional
scientific and technical activities (M), public administration and de-
fense (0), and human health and social works (Q) which are also
selected in the calculation of the top 10 eigenvector-centralities. This
correlation suggests that an industry’s position in the trade network is
often reflective of its economic importance in terms of value creation,
which is further strengthened by similar industry characteristics in
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terms of both centrality and added value (compare Fig. 4(b, g) with
Fig. 4(h)), as well as the high average correlation between VAs and the
employed out-strength (p = 0.96) centrality values.

However, the observed shifts in hub and authority centralities reveal
more nuanced adjustments in industrial leadership and trust relation-
ships within the global economy. Financial and insurance sector’s
declining hub centrality after 2011 — overtaken by basic materials and
construction - reflects a fundamental reorientation of global economic
priorities following the financial crisis, consistent with Reinhart and
Rogoff (2009)’s and Kose et al. (2022)’s documentations of postcrisis
shifts toward tangible asset sectors and infrastructure investment. This
transition aligns with Rodrik (2016)’s argument about “premature
deindustrialization”, where developing economies increasingly priori-
tize manufacturing and construction over financial services. The rise
of basic materials in authority centrality suggests growing recogni-
tion of resource-rich countries and commodity-production industries
as reliable trading partners, supporting Venables (2016)’s analysis of
the “resource curse” reversal in countries that successfully leveraged
commodity booms for broader economic development. These changes
in authority reflect evolving trust patterns in international trade, where
countries increasingly view suppliers of essential materials as more
dependable than financial intermediaries—a shift that has profound
implications for supply chain resilience and strategic economic part-
nerships. The construction sector’s emergence in authority centrality
likely reflects the global infrastructure boom, particularly in emerging
markets, consistent with the Group (2017)’s emphasis on infrastructure
investment as a driver of sustainable development (Knack et al., 2025).

According to Fig. 5, both the network indicators and VAs of in-
dustries can be clearly classified into 2-3 distinguishable clusters,
which are similarly separated for most centrality and the VA mea-
sures, revealing fundamental economic stratification patterns that align
with established theories of industrial organization and sectoral het-
erogeneity. Most of the industrial node-level centrality measures are
affected by the 2008 financial crisis, but the extent of this impact varies
significantly across clusters, reflecting differential economic resilience
capacities that correspond to varying degrees of market concentration,
capital intensity, and global integration. The DCO and EC centralities
characterizing the multiplicity of export partners show very similar
patterns, and in the case of both centralities, two main characteristics
whose trajectory after the 2008 financial crisis is completely different
can be identified, demonstrating that these sector groupings exhibit
distinct adaptive capacities in the wake of global disruptions. The
results are also validated by clustering according to VA. We can see
a similar sectoral breakdown, where the trends are the same as those
seen with DCO and EC centralities. This finding is consistent with Car-
valho (2014) sectoral shock propagation theory, which suggests that
industries with different network positions respond heterogeneously to
aggregate shocks. Industries in the first cluster, such as agriculture, food
products, and IT, demonstrate resilience and continue strengthening
postcrisis, albeit at a slower pace, which economically reflects their
essential nature and lower cyclical sensitivity, supporting Acemoglu
et al. (2012a) reported that upstream sectors and those providing basic
necessities tends to be less volatile during economic downturns. These
sectors are characterized by stronger integration and robust export part-
nerships, allowing them to sustain growth despite adverse conditions,
which are consistent with Rauch and Watson (2003) and Roner and
Tomasi (2025) evidence that differentiated product industries maintain
more stable trade relationships. In contrast, industries in the second
cluster, including mining, construction, and education, exhibit stagna-
tion, potentially due to their higher cyclical sensitivity and dependence
on domestic demand cycles, which aligns with Davis and Haltiwanger
(2001) and Goswami and Paul (2025) studies of procyclical employ-
ment patterns in construction and resource extraction sectors. The
forecasts suggest expansion in export partnerships across both clus-
ters, hinting at gradual recovery and broader network involvement,
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reflecting the economic principle of market adjustment through di-
versification strategies as described by Melitz (2003). Homophily and
modularity patterns further underscore the structural economic differ-
ences between these industry clusters, with lower homophily values in
the second cluster indicating greater cross-sectoral dependencies, con-
sistent with input-output analysis showing that certain industries serve
as critical intermediate suppliers (Leontief, 1986; De Mesnard, 2024).
However, the predictions suggest convergence in homophily indica-
tors between the two clusters, potentially reflecting ongoing structural
transformation toward more integrated global production networks,
supporting Baldwin (2016)’s concept of the “great convergence” in
industrial structures. The significant decrease in modularity observed
in the first cluster, while the concentration stagnates in the other clus-
ters, economically suggests that leading industries are becoming more
integrated into global markets while others remain relatively isolated,
consistent with Autor et al. (2016) findings on the heterogeneous im-
pacts of globalization across sectors. Decreasing betweenness centrality
in the first cluster suggests that the intermediary role of these industries
is weakening, while that of the second cluster, which includes several
transport industries, is strengthening, reflecting a fundamental shift in
the global division of labor where traditional manufacturing centers are
being replaced by logistics and service hubs, supporting Gereffi (2017)
analysis of the global value chain governance transitions.

Economically, the complementary grouping tools clarify why spe-
cific sectors co-locate and how that maps into preparedness and policy
design. Time-profile partitioning (GNDA; Fig. 5) reveals a fast-moving
“input-coordination” constellation — farm and food systems, chemicals
and advanced materials, semiconductors/electronics, freight and stor-
age, digital infrastructure, and professional/technical services — whose
joint motion arises from common choke-point inputs (e.g., fertiliz-
ers, rare earths, specialty chemicals, chips) and tight synchronization
of logistics and data; actionable safeguards here include upstream
buffer capacity for those inputs, narrowly scoped duty exemptions
on bottleneck components, pre-cleared “green lanes” for cargo and
data, and supplier spreads across at least three regions. A second,
investment-sensitive “build-and-utilities” constellation — extraction and
basic materials with building and energy/water services — clusters
because capital-expenditure cycles bind them; counter-cyclical public
orders, regional reserves of key materials, and rules-of-origin that
reward dual sourcing dampen volatility. A slow-adjusting “social and
knowledge” constellation — education, health, and cultural/publishing
— moves together via income channels rather than input ties, calling for
income smoothing and service-continuity contracts rather than border
measures. Using multiple grouping lenses is essential: modularity-based
partitions on indicator graphs highlight system levers; GNDA identifies
who moves together and when; binary biclustering (iBBiG; Table 5)
pinpoints dense origin—target dyads that actually carry transmission.
Overlaying lead-lag evidence from the causality tests onto these biclus-
ters (Fig. 6) marks which dyads ignite cascades and the typical delay,
enabling a tiered playbook: sentinel dashboards on the fast-moving
constellations trigger narrow waivers and logistics fast-tracks; if the
build-and-utilities constellation lights up next, deploy material swap
lines and diversification mandates; if the slow constellation activates,
pivot to demand-side stabilizers. This integrated reading turns other-
wise technical groupings into precise, time-sequenced resilience and
trade actions.

The observed temporal differentiation in industrial responsiveness
patterns reflects fundamental economic structural characteristics that
determine adjustment speeds to global trade disruptions. Early-
responding industries—primarily agriculture and food products
(A01_02), electronics (C26), financial services (K), and telecommunica-
tions (J61)-exhibit characteristics associated with rapid market adjust-
ment capabilities: high technology intensity, short production cycles,
and immediate consumer demand sensitivity (Acemoglu et al., 2012b;
Autor et al., 2020). These sectors typically operate with lower capital
intensity and higher labor mobility, enabling swift reallocation of
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resources during economic shocks, consistent with Melitz and Redding
(2014) findings on firm heterogeneity in trade adjustment. The early re-
sponsiveness of the electronics sector aligns with Timmer et al. (2014)’s
and Kordalska et al. (2025)’s studies of rapid global value chain
reconfiguration in technology-intensive industries, where modular pro-
duction processes facilitate quick supplier switching and geographic
relocation. Conversely, late-responding industries — construction (F),
basic materials (C24), and utilities (D, E) — are characterized by high
capital intensity, long investment horizons, and substantial sunk costs
that create adjustment rigidities (Decker et al., 2020). These upstream
and midstream industries face structural constraints including long-
term contracts, specialized infrastructure, and regulatory frameworks
that impede rapid reconfiguration, supporting Antras and Chor (2013)
theory of sequential production and adjustment costs in global supply
chains. The intermediate timing of manufacturing industries (C20, C28,
C29) reflects their position in value chains where adjustment speeds
depend on both upstream input availability and downstream demand
patterns, creating moderate response lags that correspond to inventory
cycles and production planning horizons (Alfaro et al., 2019). This
sectoral stratification suggests that trade policy interventions should
be temporally sequenced: immediate support for technology-intensive
and service sectors, medium-term assistance for manufacturing, and
long-term structural programs for capital-intensive industries, recog-
nizing that cross-country variations within the same industry may
reflect differences in technological sophistication, market structure, and
institutional frameworks (Caselli et al., 2020; Conteduca et al., 2025).

These results indicate that the systematic lag between the initial
disruptions and their broader economic consequences. While changes in
homophily (as an indication of a change in the industry trade structure)
and centrality indicators (as an indication of the changed role of indus-
tries) emerges early in sectors such as computing, electronics, finance,
and telecommunications, cascading effects reach industries such as
education, social work, publishing, and construction much later. This
delayed response underscores how crises often unfold in waves, first
impacting direct trade and financial hubs and then trickling down to
peripheral sectors. If a crisis escalates, then industries dependent on
discretionary spending, such as arts, entertainment, and recreation, will
likely suffer the most prolonged instability. Ultimately, these patterns
emphasize the importance of proactive policy measures and diversified
trade strategies to mitigate vulnerabilities across industrial sectors,
ensuring resilience in the face of global economic upheavals.

5.3. Reorganization of countries’ positions in international trade

The primary takeaway from Fig. 7 is that the global dominance
of leading countries is declining, while leadership roles are being
significantly rearranged (compare Fig. 7(a-g) to Fig. 7(h)). The re-
sults are illustrated in Fig. 7 underscore the changing dynamics of
global trade networks, particularly the rising significance of dominating
states, especially China. During the examined timeframe, China’s rise
is characterized by a steady growth in export quantities, centrality
metrics across all sectors (see Fig. 7(b, d-f)), and FDs (see Fig. 7(h)),
in stark contrast to the declining relative centrality values of other
prominent countries. This trend highlights China’s strategic emphasis
on augmenting its involvement in commerce and supply chains (see
Fig. 7(d—e)), establishing itself as a pivotal mediator of global trade.
The shift in dominance from the US to China, as indicated by metrics
such as PageRank (see Fig. 7(b)), hub (d), authority centralities (e),
and FDs (h), signifies a significant reconfiguration of trade relations and
underscore China’s increasing power and essential role in global supply
chains. The present Trump administration’s China policy appears to be
a rational measure; nonetheless, importantly, owing to global intercon-
nection, the ramifications of the tariff conflict extend beyond China and
may negatively influence the entire trade framework.

The observed grouping of countries’ trade based on Granger causal-
ity analysis highlights the temporal dynamics of trade interactions,
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suggesting underlying economic interdependencies and responsiveness
among nations. The first group, which includes Estonia, the United
Kingdom, and several Asian countries, indicates that these economies
are quick to respond to shifts in trade, owing to their export-driven
growth strategies and integration in global supply chains. The subse-
quent grouping, emerging after an average of 2.25 years, encompasses
a more diverse array of countries, suggesting a broader economic
network that reacts to initial changes in trade by adapting their exports
and imports accordingly, reflecting the interconnectedness of global
trade flows. The notable lag of 2.94 years for the third group under-
scores the delayed response of larger, often more established economies
such as the US and Germany, which may be less agile owing to their size
and complexity but significant in world trade dynamics. The observed
causal relationships between the two middle groups, with an average
lag of 1.92 years from the countries in the third group, suggests that
if changes do occur in the third group, then they will also affect
countries in the second group, as is likely the case with the current
US-Europe tariffs. Finally, Sweden and Ukraine belong to the group
of late responders, which suggests that the effects of potential crises
appear the latest here or that they are able to adequately mitigate their
effects. These findings emphasize the intricate and varied nature of
global trade interactions, highlighting the importance of considering
temporal dynamics in economic analyses to better understand the
causal relationships among countries in terms of trade.

A large tariff increase would initially hit nations that are heavily
integrated into global trade flows — especially those in the second group
- such as Japan, China, and Belgium, which would struggle with rising
costs and shrinking competitive advantages. Additionally, disruptions
would severely affect economies with strong industrial dependence,
such as Germany and the US, triggering delayed but significant con-
sequences for trade relationships worldwide. These findings align with
industry-level causality results, where sectors such as agriculture, elec-
tronics, transportation, and public services show the earliest structural
adjustments to trade dynamics.

Ultimately, the causality of industry shifts and trade transformations
is intrinsically linked. Early-reacting countries are home to industry
that are the first to undergo structural changes, reinforcing the idea
that economic shocks propagate through industrial sectors before ex-
panding to national trade policies. As trade adjustments appear to
follow cascading patterns — with an initial group reacting first, which
is followed by broader economic shifts —; thus, it becomes crucial
for policymakers and businesses to anticipate disruptions on the basis
of industrial vulnerabilities. By understanding the interconnectedness
of trade and industry responses, nations can develop more resilient
economic strategies, thus minimizing risks from potential crises and
ensuring the stability of global commerce.

China and the US play pivotal roles in global trade dynamics,
acting as central hubs that influence broader economic shifts. Based
on causality analysis, both countries fall within the third causal group,
meaning that their trade fluctuation, in the case of a global crisis,
occurs slightly later than do those in early-responding nations, but
due to interconnectedness and causal mechanisms, trade in almost all
economies disruptions if any radical change occurs in these countries. If
more serious tariff measures were implemented in Chinese or US trade;
then it would disrupt supply chains, increase production costs, and
force countries to restructure their trade dependencies. Nations heavily
integrated with these economies - such as Germany, Japan, and Mexico
— would face immediate trade disruptions, leading to price volatility
and slower economic growth. Industries reliant on Chinese manufactur-
ing or US consumer demand would struggle, prompting shifts toward
regional trade agreements or diversification in sourcing strategies. The
ripple effects could restructure global trade hierarchies, potentially
accelerating economic fragmentation and forcing adaptation at key
industrial sectors.



Z.T. Kosztydn
6. Summary and conclusion

This paper presents a thorough analysis of global trade networks
utilizing the OECD’s ICIO figures from 1995 to 2020. This study utilizes
sophisticated methodologies, including temporal analysis of multilayer
networks, clustering, biclustering, and causality analysis, to evaluate
structural indicators such as degree centralization, resilience, transi-
tivity, and modularity. The study’s principal methodological advance-
ments encompass the utilization of Granger causality to elucidate the
effect mechanism and temporal dynamics among network features,
alongside the implementation of modularity-based community detec-
tion strategies to delineate clusters within the calculated causality
networks. This study, by examining networks across diverse indus-
tries and nations, uncovers emerging dynamics and patterns in global
trade, emphasizing changes in resilience, concentration, and the impor-
tance of significant players, particularly China and the US. Individual
research is interrelated, examining various aspects of global trade
linkages and enhancing the comprehensive understanding of how eco-
nomic disturbances affect trade patterns. This research is essential for
policymakers and business leaders, highlighting the need for adaptive
methods to improve resilience in the face of persistent global economic
fluctuations and crises, thereby promoting informed decision-making
and sustainable economic development.

The research questions of this study — what causal patterns can
be identified in multilayer trade network structures and how these
patterns reveal the roles of specific countries and industries as drivers
of change in global trade dynamics — have been comprehensively
addressed through an in-depth temporal analysis of multilayer trade
networks. The findings reveal significant shifts in structural indicators
(see Contribution C,), such as increasing concentration and rising tran-
sitivity within trade networks, particularly highlighting the evolving
roles of major players such as China and the US. This study con-
tributes to the literature by unearthing the nuanced causal relationships
between trade dynamics and economic disruptions, particularly empha-
sizing the interconnectedness of countries and industries in the face of
global economic change (see Contribution C,). By employing advanced
methodologies such as Granger causality and modularity-based com-
munity detection, this research adds a unique layer of understanding
to how industrial shifts propagate through trade networks, allowing
for the better anticipation of such shifts in the future. Ultimately,
this study underscores the importance of proactive policy measures,
arguing for diversified trade strategies to enhance resilience against
potential crises, thereby providing valuable insights for policymakers
and economic strategists in navigating the complexities of global trade
systems (see Contribution Cs).

6.1. Implications for scholars

This study highlights the importance for scholars to utilize a va-
riety of methodologies — such as biclustering, network analysis, and
causality methods — when intricate trade linkages are being examined.
Each method offers distinct insights; network analysis uncovers the
comprehensive structural characteristics of trade interactions, biclus-
tering identifies the concentrated causal relationships within particular
subsets of nodes, and causality techniques clarify the temporal prece-
dence and influences among various properties. Analyzing multilayered
networks are crucial for comprehending the complex interconnections
within industry partnerships, enabling a more detailed examination of
node interactions across several trade aspects. Excluding any of these
approaches may result in an incomplete understanding; for example,
without causality analysis, correlations may be erroneously interpreted
as causation, and disregarding biclustering may overlook crucial rela-
tional dynamics that differ across contexts. This thorough methodology
strengthens the validity of the results, enabling academics to formulate
better informed conclusions regarding the changing dynamics of global
commerce and its ramifications for economic policy.
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This study demonstrates that examining complex trade networks
requires a multimethodological approach that combines network anal-
ysis, causality testing, and clustering techniques to capture different
dimensions of trade relationships. Each method provides unique ana-
lytical insights: network analysis reveals structural characteristics and
centrality patterns, Granger causality identifies temporal precedence re-
lationships between variables, and biclustering uncovers concentrated
causal relationships within specific subsets of nodes and edges. Scholars
should recognize that methodological complementarity is essential rather
than optional when studying complex economic systems. Future re-
search should avoid methodological reductionism — the tendency to
rely on single analytical approaches — as this inevitably leads to an
incomplete understanding of multifaceted phenomena such as global
trade dynamics.

The application of Granger causality testing to network structural
indicators represents a significant methodological advancement that
scholars should incorporate it into longitudinal trade studies. This
research reveals that traditional cross-sectional network analysis fails
to capture the temporal ordering of structural changes, missing criti-
cal insights into how disruptions propagate through trade systems.
Scholars should adopt dynamic network analysis frameworks that explic-
itly model time-dependent relationships between network properties,
moving beyond static snapshots to understand evolutionary processes.
Identification of three-tier causal mechanisms — from robustness to
concentration to community structure — provides a template for future
research examining how economic shocks cascade through different
levels of network organization.

Methodologically, our findings motivate an edge-centric pipeline:
estimate temporal precedence via Granger/Bayesian tests to form a
binary causal adjacency, then biclusters this matrix to recover het-
erogeneous ‘“causal regimes”—cohesive sets of relations sharing effect
direction and lags. This complements node-level community detection
by revealing multiplex shock-transmission pathways that are invisible
in centralities or GVC indices. The approach yields reproducible tem-
plates for early-warning screens and scenario design that hinge on the
link-level co-causality rather than aggregate node importance.

The multilayer network approach employed in this study offers
superior analytical depth compared to single-layer trade network stud-
ies, enabling simultaneous examination of industry-specific and cross-
industry trade relationships. Scholars should recognize that layer inter-
dependencies in trade networks cannot be adequately captured through
aggregated or isolated industry analyses. Future research should ex-
tend multilayer network theory to incorporate additional dimensions
such as temporal layers, institutional layers (formal vs. informal trade
relationships), and geographic layers (bilateral vs. multilateral trade
agreements). This multidimensional approach is particularly crucial
for understanding how policy interventions in one industry or region
propagate across the entire trade ecosystem.

This study introduces biclustering methodology to trade network
research, revealing simultaneous clustering of both nodes and relationships
that traditional clustering methods cannot identify. Scholars should
recognize biclustering as a powerful tool for uncovering hidden pat-
terns in economic networks, particularly for identifying which specific
relationships drive broader structural changes. The iterative Binary
Biclustering of Gene sets (iBBiG) method adapted for trade networks
provides a template for future applications in economic research. Schol-
ars should explore biclustering applications in other economic domains,
such as financial networks, innovation ecosystems, and supply chain
relationships, where understanding both actor groups and relationship
patterns is crucial for comprehensive analysis.

The application of multiple community detection algorithms (Lei-
den, Louvain, Infomap) reveals that different modularity measures capture
distinct aspects of trade network structure, suggesting scholars should
employ multiple algorithms rather than relying on a single commu-
nity detection methods. This research demonstrates that community
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structures in trade networks are not static but evolve in response to eco-
nomic and political changes, requiring dynamic community detection
approaches. Future research should develop temporal community detec-
tion methods specifically designed for economic networks, incorporating
economic theory about trade relationship formation and dissolution
into algorithmic design.

While Granger causality testing provides valuable insights into tem-
poral precedence relationships, scholars must acknowledge its limita-
tions when applied to relatively short economic time series. This study’s
adaptation of Granger causality to 26-year trade data demonstrates
the need for modified causality testing frameworks that account for the
specific characteristics of economic data, including structural breaks,
policy interventions, and cyclical patterns. Scholars should develop
economic-specific causality measures that incorporate domain knowledge
about trade relationship formation, policy implementation lags, and
economic adjustment processes. Additionally, future research should
explore alternative causality frameworks such as transfer entropy or
convergent cross-mapping that may be more suitable for economic
network data.

This research demonstrates the importance of the bridging network
science methodologies with economic theory to generate meaningful in-
sights for policy and practice. Scholars should avoid purely method-
ological applications of network analysis that lack economic theoretical
grounding, as this can lead to technically sophisticated but economi-
cally meaningless results. Future research should develop theoretically-
informed network metrics that capture economically relevant concepts
such as comparative advantage, trade complementarity, and economic
complexity. The integration of network centrality measures with eco-
nomic concepts such as export sophistication and economic fitness
represents a promising direction for future theoretical development.

The reliance on OECD ICIO data highlights both opportunities and
constraints for trade network research. Scholars should recognize that
data aggregation choices significantly impact the analytical results, and
future research should systematically examine how different levels of
sectoral and temporal aggregation affect network structure and causal
relationships. The development of robustness testing frameworks for
network-based economic analysis is essential, including sensitivity anal-
ysis for parameter choices in community detection algorithms, stability
testing for biclustering results, and cross-validation approaches for
causality testing. Scholars should also explore alternative data sources
and develop methods for integrating multiple datasets to overcome the
limitations of any single data source.

The application of ARIMA models to network structural indica-
tors represents an initial step toward predictive network analysis in
trade research. Scholars should develop more sophisticated forecasting
frameworks that incorporate network structure into prediction mod-
els, moving beyond univariate time series approaches to multivariate
network-based forecasting. Future research should explore machine
learning approaches specifically adapted for network data, including
graph neural networks and network-aware ensemble methods. The
development of scenario-based forecasting models that can simulate the
impact of different policy interventions on trade network evolution
represents a crucial area for future methodological development.

6.2. Implications for policymakers

This research underscores the importance of the trade network
interdependencies and their vulnerabilities for policymakers in an in-
creasingly interconnected global economy. This research illustrates that
trade networks frequently operate in unison, indicating that alterations
in one nation can trigger swift transformations throughout the entire
network, hence increasing the degree of vulnerability of countries
during crises. If a major power, such as China or the US, were to
impose punitive tariffs, then it could disrupt supply chains and provoke
economic consequences that reverberate across global trade environ-
ment, especially impacting countries closely linked to these economies.
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This analysis indicates that sanctions or tariffs may trigger cascading
effects, resulting in significant alterations in trade connections and
economic frameworks. Consequently, comprehending the interdepen-
dence of trade connections is essential; a uniform approach to sanctions
may prove counterproductive, resulting in unforeseen repercussions
for both the imposing and targeted nations. Policymakers must ac-
knowledge the complex dynamics inside trade networks and design
sophisticated measures that consider these interrelations to reduce
the degree of vulnerability and bolster economic resilience against
potential disruptions.

Causal analysis reveals that certain industries — particularly agricul-
ture and food products, electronics, transportation, and public services
— act as early indicators of structural change and exhibit strong cas-
cading effects throughout the trade network. This finding necessitates
sector-specific resilience strategies tailored to each industry’s role in the
causal chain. For industries identified as early responders, policymakers
should implement strategic stockpiling programs for critical inputs. For in-
stance, in the electronics sector, governments should maintain strategic
reserves of rare earth elements and semiconductors, while in agricul-
ture, seed and fertilizer stockpiles should be established. Additionally,
supplier diversification mandates should be introduced for companies in
these critical sectors, requiring them to maintain relationships with
suppliers from at least three different geographic regions to prevent
single-source dependencies.

The modularity analysis demonstrates strong regional clustering
patterns within the global trade network, with communities exhibiting
denser internal connections than external ones. This structural charac-
teristic suggests that policymakers should prioritize deepening regional
trade agreements and establishing bloc-level coordination mechanisms.
Specifically, regions should develop integrated payment systems to
reduce dependence on dominant global currencies, create joint strategic
reserve programs for critical commodities, and harmonize regulatory
frameworks to facilitate rapid trade rerouting during crises. For ex-
ample, European policymakers should strengthen energy cooperation
mechanisms and develop common procurement strategies for critical
raw materials, whereas Asian economies should enhance supply chain
integration through standardized logistics protocols and shared early
warning systems.

Centrality analysis reveals increasing concentration of trade power,
particularly the rising dominance of China and the relative decline of
other major economies. To counteract this vulnerability, policymakers
must implement active diversification strategies that reduce excessive
dependence on dominant trade partners. This requires establishing
reshoring and nearshoring incentive programs that provide tax benefits,
subsidies, and regulatory fast-tracking for companies that relocate the
production of strategic goods closer to home markets. Furthermore,
governments should launch industrial upgrading initiatives focused on
moving up the value chain in sectors where they currently serve as low-
value suppliers, particularly in technology-intensive industries where
supply chain control translates to economic leverage.

The identification of distinct causal groups among countries — with
early responders such as Estonia, the UK, and South Korea signaling
changes before they cascade to larger economies — provides a roadmap
for developing predictive monitoring systems. Policymakers should es-
tablish real-time trade network dashboards that track key structural
indicators including centrality measures, modularity coefficients, and
resilience metrics. These systems should automatically trigger policy
responses when threshold values are exceeded. For instance, when be-
tweenness centralization increases beyond historical norms, this should
activate contingency plans for alternative trade route development.
Similarly, declining modularity values should prompt enhanced re-
gional cooperation mechanisms.

The three-tier causal mechanism identified in this study — where
robustness changes first, followed by concentration and fragmentation
patterns, and finally community structures — provides a framework
for graduated crisis response protocols. In the first phase, when network
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robustness indicators decline, policymakers should activate protective
measures for critical infrastructure and essential supply chains. During
the second phase, characterized by changes in centralization patterns,
governments should implement trade route diversification measures
and activate alternative supplier networks. In the third phase, when
community structures begin to shift, focus should turn to long-term
structural rebuilding and establishing new trade partnerships to replace
disrupted relationships.

Temporal causality analysis reveals that countries occupy differ-
ent positions in the global response hierarchy, requiring differentiated
strategic approaches. Early-responding countries should maintain high
flexibility and rapid adaptation capabilities, investing in diverse eco-
nomic portfolios and maintaining excess capacity in critical sectors.
Late-responding countries such as Sweden and Ukraine should lever-
age their stability to serve as shock absorbers for regional networks,
developing capabilities to maintain trade flows when other partners
are disrupted. Large economies in the middle tier, including Germany
and the United States, must recognize their systemic importance and
implement responsible trade policies that consider global spillover ef-
fects, including gradual rather than sudden policy changes and advance
consultation with trading partners.

Industry-level causality patterns reveal that sectors such as basic
materials and construction have gained prominence while financial
services have declined in hub centrality. This suggests that policy-
makers should rebalance industrial policies to reflect changing structural
importance. Countries should develop critical industry protection pro-
grams for sectors identified as central to network stability, including
preferential access to capital, workforce development programs, and
regulatory protection from hostile takeovers. Simultaneously, policies
should encourage the development of industrial redundancy in critical
supply chains, supporting the maintenance of alternative production
capabilities even when they may not be immediately cost-competitive.

The strong interconnections revealed between technology sectors in-
dicate vulnerabilities that require strategic technological autonomy mea-
sures. Policymakers must launch comprehensive technology sovereignty
programs that build domestic research and development capabilities in
critical areas including semiconductors, artificial intelligence, and re-
newable energy technologies. This involves creating innovation clusters
that link universities, research institutions, and industry, establishing
sovereign patent pools for critical technologies, and developing domes-
tic alternatives to foreign-controlled technology platforms. Addition-
ally, governments should implement technology supply chain mapping
initiatives to identify and address critical dependencies before they
become sources of vulnerability during crises.

7. Limitations and directions for future work

Notwithstanding the abovementioned constraints, this methodol-
ogy offers a comprehensive framework for analyzing intricate trade
networks. A significant restriction is the dependability of causality
tests when utilized on short-term time-series data, shown by the 26-
year timeframe examined in this work; the constrained data length
may result in misleading correlations and compromise the precision
of the projections. The dependence on the OECD’s The ICIO tables
presents data constraints, as this dataset may fail to encompass all
intricacies of trade dynamics or the complete spectrum of industries
involved. Moreover, the aggregation of sectors might impede com-
prehensive analysis, as it conceals differences within subsectors and
may neglect essential causal pathways. Excluding any of the utilized
approaches, such as biclustering or network analysis, would result in
the forfeiture of critical insights and might culminate in an inadequate
understanding of the complexities inherent in trade interactions and
structural transformations. The integration of various techniques is
crucial for understanding the intricacies of global trade dynamics and
for establishing a refined foundation for future analysis and policy
suggestions.
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Future research derived from this study might concentrate on broad-
ening the temporal examination of multilayer trade networks beyond
the 1995-2020 period to include more recent developments, such
as the enduring effects of the COVID-19 pandemic and geopolitical
conflicts. Moreover, researchers could investigate the integration of
more detailed data to mitigate the constraints linked to sectoral aggre-
gation, facilitating a more profound understanding of certain subsector
dynamics and their trading patterns. Future research might examine
the influence of developing technologies on trade dynamics and the
contributions of digital trade in transforming global economic relations.
Moreover, analyzing the impact of diverse policy interventions on
real-time trade networks could furnish policymakers with prompt in-
sights to formulate more effective strategies. Utilizing machine learning
or sophisticated statistical methods to improve the outcomes of the
causal analysis of emerging trends might deepen the understanding of
these complex networks, hence enabling more precise forecasting and
scenario planning.
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Appendix A. Additional figures and tables

See Figs. A.9-A.11.

Appendix B. List of employed node-level indicators

Table B.6 shows the employed node-level centrality measures, for
a given (fixed) year. where o;,(c;,) is the number of shortest paths
between nodes c;, and ¢, that pass through node c;,. o; is the total
number of shortest paths between countries a; and a;; d(c;,, ¢;,) is the
shortest distance from country j in industry ¢ to country i in industry p;
A is the eigenvalue of the adjacency matrix used to compute eigenvector
centrality; d is a damping factor used in PageRank calculations, typi-
cally set to around 0.85; H OMJ.Cq is a relative centrality or Homophily
measure for a given centrality measure C for country j in industry g,
Clejpl I, is a given centrality measure restricted to the industry g; C(c;,)
is an arbitrary centrality value without any industrial restriction.

Appendix C. Employed network-level indicators

Table C.7 lists the employed network-level indicators for a fixed
year.

where N is the total number of nodes (countries), M is the total
number of edges, N;e“‘i“ is the number of nodes in the largest compo-
nent in sector p, 4;, ;, is the (supra) adjacency matrix entry indicating
connections between nodes i and j in sector p and sector g, |N;,| is
the number of reachable nodes from node i in sector p, and Clu? is the
clustering coefficient in industry p.
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Fig. A.9. Sectorial network properties.
Appendix D. The setting of ARIMA and causality analysis The general formulation of the ARIMA model can be expressed as:
. - - - @(B)(1 - B)'y, = O(B)e, (D.1)
The ARIMA model is a widely used statistical technique for fore- ! !
casting time-series data. The ARIMA model is characterized by three where y, represents the time series data, B is the backshift operator,
parameters—(p, d, q), where p is the number of autoregressive terms, d ®(B) is the autoregressive polynomial of order p, (1 — B)? signifies the
is the degree of differencing needed to make the time series stationary, differencing operation (where d represents the number of differences
and ¢ is the number of lagged forecast errors in the prediction equation. taken to achieve stationarity), @(B) is the moving average polynomial
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Fig. A.10. Network properties in time (forecast with Bayesian ARIMA, 95% confidence interval).

of order ¢, and ¢, denotes white noise error terms. By identifying ap-
propriate values for p, d, and g through the analysis of Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF), one can
construct an optimal ARIMA model tailored to the characteristics of the
time series data.

Prior to applying the ARIMA model, ensuring that the time series
data is stationary. Therefore, we assessed the results through tests such
as the Augmented Dickey-Fuller (ADF) test, which examines the null
hypothesis that a unit root is present in the time series. If the p-value
obtained from the ADF test is below a predetermined significance level
(commonly 0.05), the null hypothesis can be rejected, indicating that
the series is stationary. If the data require differencing (i.e., d > 0),
this process is usually repeated until a suitable level of stationarity
is achieved. Following differencing, diagnostic checks using the ACF
and PACF plots help in identifying the optimal parameters p and gq.
Finally, model validation can be performed using metrics such as the
Akaike Information Criterion (AIC) or the Bayesian Information Crite-
rion (BIC), along with residual analysis to ensure the reliability and
robustness of the ARIMA model. The parameters of the ARIMA model
were determined by the auto.arima function of the forecast
package. However, the ACF and PACF values and the stationarity of the
time series were also double checked. Stationarity was tested using ADF
tests, while the terms were determined using ACF and PACF functions.

The objective of investigating causal relationships is to determine
how alterations in the structure of the trade network or the roles
of countries and industries influence other entities over time. The
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employed Granger causality, a concept named after the econometrician
Clive Granger (Granger, 1969), refers to a statistical hypothesis test
that determines whether one time series can predict other time series
on the basis of their historical values. Formally, time series Y is said
to Granger-cause time series X if past values of Y provide significant
information about future values of X, given that past values of X
alone do not provide the same level of predictive power. This can
be mathematically expressed in a VAR framework, where one might
quantify the relationship as follows:

» q
=4ap+ Z @ X+ 2 bY, j+e (D.2)

i=1 j=1

P q
co+ 2 Y, +
i=1 j=1

If the coefficients b; are statistically significant, we can conclude
that Y Granger-causes X. A key aspect of Granger causality is that
it does not imply true causality in the philosophical sense; rather, it
establishes a predictive relationship on the basis of temporal precedence.
Therefore, we use the precedence between time series rather than
causality relationships.

To select the appropriate lag for Granger causality testing, several
methods such as AIC, BIC, or SC were employed and it is tested with
BVAR methods. These criteria evaluate the goodness of fit of models
with varying lags, penalizing for complexity to prevent overfitting.
Additionally, an F test was used to ascertain the significance of the

X,

Y, = (D.3)

d;X,_;+mn
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Fig. A.11. Average clustered industrial node-level properties forecasting by Bayesian ARIMA models.

Granger causality results at different lag structures, ensuring that one
appropriately captures the underlying temporal dynamics. To cross-
validate the results and lags of Granger causality analysis we also
calculated several Bayesian approaches.

The BVAR method employs a structured prior distribution to address
the curse of dimensionality in multivariate time series models. For
a bivariate VAR(p) model y, ¢+ X" Ay, + €, the Minnesota
prior assumes that each variable follows a random walk, with prior
mean IE[AI(.;.)] = 6;6;; where §; = 1 and §;; is the Kronecker delta. The

A2 o2
—, where 4 controls overall
o

[
tightness and / represents the lag order. This method provides stable
parameter estimates even with limited data by shrinking coefficients
toward economically meaningful values, making it particularly suitable
for Granger causality analysis where parameter precision is crucial for
reliable inference.

The MCMC approach provides full posterior distributions for all pa-
rameters through Gibbs sampling, offering comprehensive uncertainty
quantification. For the VAR system Y = Xp+E where E ~ M N (0, 2,1;),
we specify the following conjugate priors g|X MN@By, 2, V)
and X ~ IW(Sy,v,). The Gibbs sampler alternates between drawing
pOIZED Y ~ MN@®B,Z0D, V) and ZO|18DY ~ IW(S, D), where
the hat notation denotes posterior parameters. Granger causality is
assessed by computing the posterior probability P(y; # 0|Y) for the
coefficients of the causal variable. This method captures the full param-
eter uncertainty and provides probabilistic statements about causality
relationships.

The BFA method provides direct model comparison by computing
the ratio of marginal likelihoods between competing hypotheses. For

. . . 1
prior covariance structure is Var[Af.j) 1=

~
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testing whether x; Granger-causes x,, we compare models M, (un-
restricted) and M|, (restricted) through BF, %’ where the
marginaal likelli/tzlood under conjugate Normal-Gamma priors is p(y| M) =
s O N @) T2, with @, = ag+T/2, B, = Ao+ 567 y+b] V5 by
bI'V-1b,), and V;! = V5! + XTX. The posterior probability of causality
is then P(M,ly) = IfB“’
This approach provides
causal hypotheses.

The synergistic value of employing all four methods lies in their
complementary strengths and the robustness achieved through method-
ological triangulation. Convergent results across frequentist and Bayesian
paradigms strengthen confidence in causal inferences, whereas diver-
gent results signal the need for deeper investigation. The classical
approach provides computational efficiency and familiar statistical
interpretation, while Bayesian methods offer richer uncertainty charac-
terization and more flexible modeling assumptions. The BVAR method
connects classical and fully Bayesian approaches, offering improved
finite-sample properties without the computational intensity of MCMC.
The BFA provides the most direct hypothesis testing framework, yield-
ing clear evidence statements about relative model support. Together,
these methods create a robust analytical framework that captures dif-
ferent dimensions of statistical evidence, computational efficiency, and
interpretive clarity, ultimately leading to more reliable and nuanced
conclusions about causal relationships in time series data.

To establish a strong consensus across the four methodological ap-
proaches, we must first standardize the diverse outputs into a common
evidence scale [0, 1], where 0 indicates no evidence for causality and 1
represents maximum evidence. Let E; € [0, 1] denote the standardized
evidence measure from method i, where i € {1,2,3,4} corresponds to

+— assuming equal prior model probabilities.
1
direct evidence quantification for competing
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Table B.6
Employed node-level indicators in the multilayer trade network.
Abbr. Node-Level Formula Meanings
Indicator
DCI Indegree DCI(c;,) = quev Cinia The number of exporters to country j in
centrality industry q.
DCO Outdegree DCO(c;,) = Zc,,,ev i The number of importers from country j
centrality in industry gq.
DC Degree DC(c;,) = DCI(c;,) + DCO(cy,) The number of trade partners of country
centrality Jj in industry q.
SCI Instrength SCI(c;,) = Z[’”GV wie;, ;) The volume of exports to country j in
centrality industry q.
Sco Outstrength SCO(c;,) = Er,,,sV wiejqip) The volume of imports from country j
centrality in industry gq.
BC Betweenness BC(c;,) = Z% I %‘K’”) Which a country acts as a bridge along
centrality N the shortest paths between other
countries in the trade network.
CC Closeness CC(c;,) = ﬁ How quickly a country can access other
centrality ey e countries in the trade network based on
the shortest paths.
EC Eigenvector EC(c;,) = i ZL-,,,EV w(e;, ;) EC(c;,) Country’s influence in the trade network
centrality by considering not just the number of
connections but the importance of those
connections.
AUT Authority AUT(c;y) = Zc,ﬂev HU B(c;,)) The country’s reputation or significance
centrality as a trusted source of exports within a
particular industry. High authority
scores indicate that a country is seen as
a primary destination for trade.
HUB Hubness HUB(c;,) = chey AUT(c;,) The ability of a country to direct trade
centrality toward other significant trading partners.
PRC PageRank PRC(c;)=(1-d)+d Za,,,ev Z?gt’)) The importance of a country based on
centrality ' the trade volume and connectivity of its
trading partners.
HOM Homophily H OMﬁ; = C(¢;)% = L;’["li‘;” Relative centrality value restricted to

industry gq.

BVAR, Classical VAR, MCMC analysis, Bayesian, and BFA approaches,
respectively.

For the Granger causality based on classical VAR method, we trans-
form the p-value p using the monotonic transformation:

(D.4)

For the BVAR, we utilize the Forecast Error Variance Decomposition
(FEVD) proportion ¢ € [0, 1] that variable x; contributes to the variance
of variable x, at horizon A:

FEVD, _,(h)

Ey= o—7—— D.5
" X FEVD,_,, () b9

For the MCMC Bayesian method, we directly use the posterior
probability of causality:

E; = P(y £ 0]Y) (D.6)

where y represents the vector of coefficients for the causal variable in
the target equation.

For the BFA, we convert the Bayes factor BF|, to posterior proba-
bility assuming equal prior model probabilities:

BF,

" 1+ BF,
For the strong consensus, significant causality (p < 0.01), high
posterior probability (Prob(> 0.85)), strong FEVD (FEVD > 0.15),
and strong BF), > 5 were assumed Granger causality between two
time series. This careful approach is essential in economic modeling,
where misidentified causal relationships could lead to misguided policy
recommendations or investment strategies.

E, (D.7)

Conversely, instantaneous causality is a more immediate concept,
which refers to the relationship between variables at the same point
in time. Such causality assesses whether two variables are correlated
at a specific moment, typically measured via correlation coefficients.
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Mathematically, if two variables X, and Y, have their correlation is
expressed as follows:

cov(X,,Y,)

cor(X,;,Y) = (D.8)

Ox Oy
where cov denotes covariance and ¢ represents the standard deviations
of X and Y, then, instantaneously, changes in one variable may be
associated with changes in the other variables at the same time. Unlike
Granger causality, instantaneous causality does not attempt to evaluate
the temporal influence of one variable on another variable. When com-
paring the two concepts, Granger causality focuses on the predictive
capacity of a variable over time, whereas instantaneous causality exam-
ines the correlation at a single point in time. Both concepts can coexist
in an analysis; one may find that two variables are instantaneously
correlated but does not exhibit a Granger-causal relationship, indicating
that while they move together, one does not predict the other.
Despite their advantages, Granger causality and instantaneous causal-

ity analyses have several limitations. These analyses assume linear
relationships between variables and can be sensitive to the choice of
lags and the presence of outliers. Furthermore, these analyses may
lead to spurious results in the presence of confounding variables
or nonstationary data, which necessitates pretesting for stationarity
through tests such as the ADF test. However, despite these limitations,
Granger causality and instantaneous causality can be incredibly useful
in analyzing a 26-year trade network in terms of deriving insights
into the dynamic relationships among trading countries, industries, and
economic indicators. By applying appropriate preprocessing steps, such
as differencing and cointegration analysis, researchers can enrich their
understanding of how trade dynamics change over time and which
factors truly influence these changes in a temporally structured manner,
shedding light on policy implications and future trends in international
trade. However, when analyzing relatively short-term time-series data,
such as a 26-year period (1995-2020), Granger causality emerges as an
ideal choice because advanced causality methods require longer-term
time series.
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Table C.7
Network-level indicators in the multilayer trade network.

Abbr. Network-level Short mathematical formula Interpretation

indicator
B
Assort Assortativity Assort = Z"’(lDC(ﬁp)"l’C(c:q>)lf$(E,,,(f)c(ﬂ"’f)) Describes the tendency of countries to connect with others that
2O, = (Z,(0CC)) have similar trade volumes or degrees, indicating whether trade
relationships promote balance or disparity.

Dens Density Dens = ﬁ Quantifies the proportion of possible trade connections that are
realized, indicating how interconnected the countries are overall.

AVPL Average Path AVPL = m Zcm e, d(cips€jq) Represents the average number of steps needed to connect any

Length two countries, reflecting the efficiency of trade routes.

MLAVPL Multilayer MLAVPL = ﬁ >, AVPL Assessing the average path length across multiple layers shows

Average Path o how efficiently connections can be made through different
Length industries.

Tra Transitivity Tra= % Indicates the likelihood that countries sharing a common trading
partner also trade with each other, reflecting the degree of
clustering in trade relationships.

DZI Indegree DZI = N% (m%) Measures the inequality in the incoming trade connections across

centralization countries, indicating dependence on a few major importers.

DZO Outdegree DZO = ﬁ (%) Indicates how concentrated outgoing trade relationships are,

Centralization " reflecting how few countries dominate as exporters.
BZ Betweenness BZ = m 2, BC(cy) Highlights the extent to which countries act as intermediaries in
Centralization trade, facilitating connections between others and controlling
trade flows.

CZ Closeness CZ= ﬁ 2, CCleyy) Reflects the overall accessibility of countries to each other in

Centralization the network, indicating the efficiency of trade connections.
PRZ PageRank PRZ = ﬁ >, PRC(c;,) Measures the overall influence of countries based on their trade
Centralization volume and the significance of their trading partners.

MVA Mean Vertex MVA= * Z,p |DCI(c;,) — DCO(cy)| Provides insights into the balance between imports and exports
Asymmetries across countries, highlighting structural inequalities in trade.

RRes, SRes Resilience for 2, Nt Measures the ability of the network to maintain connectivity
Random/ under random/systematic removals of countries, indicating
Systematic robustness of trade relationships.
Attack

Mod Modularity Mod = ﬁ Zip_”(AiMq — DCI(c;,)DCO(c;,)5(C;, C)) Identifies the degree to which the network can be divided into
Value modules, or communities, with dense internal connections and

sparse external ones, indicating trade groupings.

RCC Reach Club RCC = iN X 1N Measures the efficiency of trade reachability across the network,

Coefficient indicating how well countries can connect with each other.

MLGLClu Multilayer MLGLClu = ﬁ Y, Clu Captures the clustering tendency across different industries,

Global reflecting the propensity for countries to develop strong trade
Clustering ties within and between layers.

Appendix E. The application of community-based clustering and
biclustering methods

Modularity-based community detection algorithms minimize Eq. (E.1)
as follows:

1 .
M= 2L 2 (ri,j - }”'i,j) E(Ciicj)y

LJ

(E.1)

where M is the modularity value, r; ; is the edge weight between nodes
i and j, 7; ; is the expected weight based on the null model of Newman
(2006), L is the total weight in the network, y is a constant (default 1),
and 6 equals 1 if nodes i and j belong to the same community and 0
otherwise. For directed similarity graphs, Eq. (E.2) must be minimized.

1 o
M=+ D (riy = 1hiy) 8(CLCp,
i

(E.2)

The result of community detection is a partition of the graph. By
further developing this method, by specifying a given distance measure,
it is possible to search for modules and, thus, indicator groups between
variables and data (Kosztyan et al., 2022). This procedure is adopted
in the GNDA method, which does not require us to specify the number
of clusters in advance. In real and synthetic tests, the method correctly
estimated the number of clusters (Kosztyan et al., 2024a), and thus, we
also used this approach to separate the time series of industry patterns.

Conversely, biclustering goes a step further by allowing for The
simultaneous clustering of both rows and columns in an adjacency
matrix, a capability that is particularly useful when dealing with data
that have inherent multidimensional characteristics. In the context
of a directed trade network, where nodes represent various node or
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network properties and edges signify the causal relationships between
these properties, biclustering can provide a more nuanced analysis.
This approach allows for the identification of subgroups of nodes that
exhibit similar behaviors or properties across specific conditions or
timeframes while also revealing which causal relationships (the edges)
are most significant within those groupings.

We employed the iBBiG method, which assumes that the utilized
dataset is binary.

This algorithm balances the homogeneity (in this case, entropy) of
the selected submatrix with the size of the league. Formally, the iBBiG
algorithm maximizes the following target function if the binarized
dataset with a given threshold ¢r is denoted as B,,:

Zi Zj [BJi,j , if Me(B)> =
0

,if Me(B) <, (E.3)

max « score 1= (1 — Hp)* {
where score is the score value of the submatrix (bicluster, league)
B € B,,. Hy is the entropy of submatrix B, with a given threshold tr,
Me(B) is the median of bicluster B, a € [0, 1] is the exponent, and 7 is
the cutting value. If tr, 7 or « is increased, then we obtain a smaller but
more homogeneous submatrix. To strengthen the significance, stability
and reliability, previous studies (see, e.g., Gusenleitner et al., 2012;
Kosztyan et al., 2019) recommend that the balance exponent (a) be
set to 0.3 while the cutoff threshold (r) be set to 0.5.

Identifying biclusters is a heuristic method. Therefore, in addition
to conducting significance tests both for rows and columns, we must
calculate the stability of the biclusters. Typically, a bootstrapping algo-
rithm is used to calculate the stability of biclusters. This method ignores
rows and columns and evaluates the changes within biclusters Lee et al.
(2011). Stability is also calculated for both rows and columns. We say
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Table F.8
Employed similarity measures in the multilayer trade network.
Abbrev. Similarity indicator Formula Interpretation
NS Node similarity NS(p.q) = % > W Measures the extent to which a country share common neighbors in
e different industries, indicating their relational similarity based on
direct trade links.

ES Edge similarity ES(p,q) = % > % Assesses the similarity between two edges based on their incident

e nodes and trade volumes, reflecting how closely two trade
relationships mirror each other.

PD Pearson correlation PD(p,q) = cor(DC(c;,), DC(c;,)) Examines the linear correlation between the degree centralities of
of degree countries across two different industries, indicating the consistency
centralities of trade relationships across those industries.

Sp Shortest path SP(p,q) = % Y (min{d(c;,, ¢;)}) Represents the minimum number of edges that must be traversed to
distances connect two countries, highlighting the efficiency of trade routes

and potential connectivity between them.
Table G.9
List of countries.
ID 1SO3 Country D 1SO3 Country
1 ARG Argentina 40 KAZ Kazakhstan
2 AUS Australia 41 KHM Cambodia
3 AUT Austria 42 KOR Korea
4 BEL Belgium 43 LAO Lao (People’s Democratic Republic)
5 BGD Bangladesh 44 LTU Lithuania
6 BGR Bulgaria 45 LUX Luxembourg
7 BLR Belarus 46 LVA Latvia
8 BRA Brazil 47 MAR Morocco
9 BRN Brunei Darussalam 48 MEX Mexico
10 CAN Canada 49 MLT Malta
11 CHE Switzerland 50 MMR Myanmar
12 CHL Chile 51 MYS Malaysia
13 CHN China (People’s Republic of) 52 NGA Nigeria
14 CIv Cote d’Ivoire 53 NLD Netherlands
15 CMR Cameroon 54 NOR Norway
16 COL Colombia 55 NZL New Zealand
17 CRI Costa Rica 56 PAK Pakistan
18 CYP Cyprus 57 PER Peru
19 CZE Czechia 58 PHL Philippines
20 DEU Germany 59 POL Poland
21 DNK Denmark 60 PRT Portugal
22 EGY Egypt 61 ROU Romania
23 ESP Spain 62 RUS Russian Federation
24 EST Estonia 63 SAU Saudi Arabia
25 FIN Finland 64 SEN Senegal
26 FRA France 65 SGP Singapore
27 GBR United Kingdom 66 SVK Slovakia
28 GRC Greece 67 SVN Slovenia
29 HKG Hong Kong, China 68 SWE Sweden
30 HRV Croatia 69 THA Thailand
31 HUN Hungary 70 TUN Tunisia
32 IDN Indonesia 71 TUR Turkey
33 IND India 72 TWN Chinese Taipei
34 IRL Ireland 73 UKR Ukraine
35 ISL Iceland 74 USA United States
36 ISR Israel 75 VNM Vietnam
37 ITA Italy 76 ZAF South Africa
38 JOR Jordan 77 ROW Rest of the World
39 JPN Japan

that a bicluster is significant (stable) if it is significant (stable) for both
rows and columns. We calculated both the significance and stability of

each bicluster.

Appendix F. List of employed similarity indicators

Table F.8 lists the employed similarity measures comparing indus-

tries.

where A is the number of actors where each country is considered
only once. N(c;,) is the set of neighbors (trading partners) for country i
in industry p, and T'(e(i,)) is the set of trade relations for edges e(i,,i,)

and e(iy,i,).
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Appendix G. List of country and industrial codes

See Tables G.9 and G.10.

Data availability

All data and all code can be included into the final version. The

entire source codes and data sources of the paper including calculations
can be downloaded here: https://github.com/kzst/ICIO/.


https://github.com/kzst/ICIO/

Z.T. Kosztydn

Structural Change and Economic Dynamics 76 (2026) 209-236

Table G.10
List of industries (sectors).
ID Old code Code Industry
1 DO01T02 A01_02 Agriculture, hunting, forestry
2 D03 A03 Fishing and aquaculture
3 DO5T06 B05_06 Mining and quarrying, energy producing products
4 D07T08 B07_08 Mining and quarrying, non-energy producing products
5 D09 B09 Mining support service activities
6 D10T12 C10T12 Food products, beverages and tobacco
7 D13T15 C13T15 Textiles, textile products, leather and footwear
8 D16 Cl16 Wood and products of wood and cork
9 D17T18 C17.18 Paper products and printing
10 D19 C19 Coke and refined petroleum products
11 D20 C20 Chemical and chemical products
12 D21 C21 Pharmaceuticals, medicinal chemical and botanical products
13 D22 C22 Rubber and plastics products
14 D23 C23 Other non-metallic mineral products
15 D24 C24 Basic metals
16 D25 C25 Fabricated metal products
17 D26 C26 Computer, electronic and optical equipment
18 D27 c27 Electrical equipment
19 D28 Cc28 Machinery and equipment, nec
20 D29 C29 Motor vehicles, trailers and semi-trailers
21 D30 C30 Other transport equipment
22 D31T33 C31T33 Manufacturing nec; repair and installation of machinery and
equipment
23 D35 D Electricity, gas, steam and air conditioning supply
24 D36T39 E Water supply; sewerage, waste management and remediation
activities
25 D41T43 F Construction
26 D45T47 G Wholesale and retail trade; repair of motor vehicles
27 D49 H49 Land transport and transport via pipelines
28 D50 H50 Water transport
29 D51 H51 Air transport
30 D52 H52 Warehousing and support activities for transportation
31 D53 H53 Postal and courier activities
32 D55T56 I Accommodation and food service activities
33 D58T60 J58T60 Publishing, audiovisual and broadcasting activities
34 D61 Jel Telecommunications
35 D62T63 J62.63 IT and other information services
36 D64T66 K Financial and insurance activities
37 D68 L Real estate activities
38 D69T75 M Professional, scientific and technical activities
39 D77T82 N Administrative and support services
40 D84 o Public administration and defence; compulsory social security
41 D85 P Education
42 D86T88 Q Human health and social work activities
43 D90T93 R Arts, entertainment and recreation
44 D94T96 S Other service activities
45 D97T98 T Activities of households as employers; undifferentiated goods- and

services-producing activities of households for own use
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