
   
 

 

International Journal of Computer Science in Sport 
 

  
Volume 19, Issue 2, 2020 

Journal homepage: http://iacss.org/index.php?id=30 

 

DOI: 10.2478/ijcss-2020-0010 

Multimodal Approach for Kayaking Performance 
Analysis and Improvement        

Nagy, G.1,2, Komka, Zs.1,3,7, Szathmáry, G.1, Katona, P.1,4, Gannoruwa, L.4,  

Erdős, G.5, Tarjányi, P.9, Tóth, M.7, Krepuska, M.1,6, Grand, L.1,5,8 

1 Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 

Hungary  

2 Department of Telecommunications and Media Informatics, Budapest University of 

Technology and Economics, Hungary 

3 Heart and Vascular Center, Semmelweis University, Hungary 

4 Department of Kinesiology, University of Physical Education, Hungary 

5 Institute of Advanced Studies, Hungary 

6 Department of Medical Imaging, Semmelweis University, Hungary 

7 Department of Health Sciences and Sport Medicine, University of Physical Education, 

Hungary 

8 Neurology and Neurosurgery, The Johns Hopkins Hospital, United States 

9 Polaritás-GM Ltd, Budapest, Hungary 

 

Abstract 
Artificial Intelligence (AI) invades fields where sophisticated analytics has not 
been applied before. Modality refers to how something happens or is experienced. 
Multimodal datasets are beneficial for solving complex research problems with AI 
methods. Kayaking technique optimization has been challenging, as there seems to 
be no gold standard for effective paddling techniques since there are outstanding 
athletes with profoundly different physical capabilities and kayaking styles. 
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Multimodal analysis can help find the most effective paddling techniques for 
training and competition based on individuals' abilities.   
We describe the characteristics of the output power of kayak athletes and 
Electromyogram (EMG) measurements collected from the most critical muscles, 
and the relationship between these modalities. We propose metrics (weighted 
arithmetic mean difference and variability of power output and stroke duration) 
suitable for discerning athletes based on how efficiently and correctly they perform 
particular training tasks. Additionally, the described methods (asymmetry, 
coactivation, muscle intensity-output power) help athletes and coaches in assessing 
their performance and compare it with others based on their EMG activities.  
As the next step, we will apply machine-learning approaches on the synchronized 
dataset we collect with the described methods to reveal desirable EMG and stroke 
patterns. 

KEYWORDS: KAYAKING TECHNIQUE ANALYSIS, KAYAKING PERFORMANCE, 
SPORTS ANALYTICS, MAXIMAL INTENSITY EXERCISE TEST  
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Introduction 

Sub-arctic native tribes widely used kayaks, even 4000 years ago, and the word itself originates 
from the inuit qajaq (man-boat). Kayak-canoe sport became a summer Olympic discipline at the 
1936 Berlin games (www.olympic.org). Officially titled flatwater canoe sprint, the basic rules 
are simple: the fastest athlete wins. The tracks became shorter with the years, hence improving 
the sport performance of kayak- canoe athletes became a complex task, optimally carried out by 
an expert team. Each team member receives different performance feedback, which can be 
provided by various sensors and measurement devices. Their subjective observations 
supplemented by the objective data from different measurements might provide enough 
information for the coach regarding the optimal training strategy of the individual athletes. 
Despite the need for easy to understand metrics and visualization methods for improving 
kayakers' performance, the literature is sparse in papers describing multimodal, integrated 
quantitative, and visualization tools.  

In sprint kayaking leg, pelvis, and trunk movements are essential for performance (Bjerkefors, 
Rosén, Tarassova, & Arndt, 2019). In this seminal study, they reported significant positive 
correlations between power output and peak shoulder and trunk flexion, trunk and pelvis rotation 
motion ranges, and hip, knee, and ankle flexion motion ranges. Using kayak ergometer data, 
others reported a high correlation between the summation of maximal voluntary contraction 
scores of 7 different tasks and the measured 200m performance times on the water (Steeves et 
al., 2019). Others reported the importance of high force output changes to high power output in 
long-distance kayakers (Borges, Dascombe, Bullock, & Coutts, 2015). Paddle instrumentation 
was utilized to investigate blade/water interactions (R.J.N. Helmer). These all support the fact 
that there is a need for assisting technologies for efficiently planning competition and training 
strategies. The training should prepare athletes to have the ability to perform at the highest level 
in each phase of the track (e.g., start phase, mid-race/travel phase, running-in phase). To achieve 
the aimed performance, continuous and instant feedback is useful for athletes to follow the 
instructions.  
Several earlier reports showed the feasibility and reproducibility of various measurements during 
training (Fleming, Donne, Fletcher, & Mahony, 2012; Tay & Kong, 2018; Vadai G., 2013), in 
laboratory environments and on-water (Bjerkefors et al., 2019; Steeves et al., 2019; Vadai, 2013; 
Winchcombe, Binnie, Doyle, Hogan, & Peeling, 2019). However, sophisticated parallel data 
collecting, processing, and feedback systems still need to be established for kayakers.  

To improve athletes' performance, we aimed to develop and test a system where biomechanical 
and rowing force data are collected and processed simultaneously during cardiovascular 
endurance training. This paper focuses on simultaneous rowing force and EMG data processing 
and visualization methods, which we can integrate into a complete platform for detailed 
comparative performance analysis. 

Methods 

Twelve top kayakers participated in the study (12 men, age: 23,50±3,33 years; height: 
184,21±4,09 cm; weight: 83,00±7,17 kg). Right, and left-handed athletes proportion was 11:1, 
while right and left shaft rotators were 10:2.  

Subjects were top kayakers (two marathon distance, four medium (1000m), six short (200-500m) 
distance), and we carried out measurements with a kayak ergometer (Polaritas-GM Ltd., 
Budapest, Hungary)(Figure 1C.). All participants submitted their written informed consent 
according to the approved medical study protocol.  
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We examined athletes according to the provisions of the Helsinki Declaration on Human Studies, 
which was authorized by the Ethics Committee of the University of Physical Education (TE-
KEB/No15/2018) and the Semmelweis University (205-5/2007). 

 
Figure 1. We carried out the testing protocol on two consecutive days with details shown on A. EMG recordings 

(left, right) were acquired from the muscle groups represented on B. The used ergometer with stroke 
force sensors installed (C).    
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Before the actual recording sessions, as a preprocessing protocol, a sync signal was transmitted 
to each recording device.  
We used the left and right-hand data received from the force sensors on the ergometer to define 
the stroke boundaries in the paddling process. A single-sided stroke start point was when the 
force exceeded 12N, and the finish point was when the cycle on the other side started. We applied 
these boundaries to each signal consistently after synchronization. For achieving a standard 
frequency rate of 1kHz, we resampled data with linear interpolation. 
We acquired surface EMG signals from various muscles (abbreviated rt - right, lt - left, Lat. 
Dorsi - m. latissimus dorsi, Middle Trap. - m. trapezius (middle fibers, transverse of the 
trapezius), Ant. Deltoid - m. deltoideus anterior (anterior deltoids), Pect. Major - m. pectoralis 
major, Ext. Oblique - m. obliquus externus abdominis, Rectus Fem. - m. rectus femoris) of the 
participants during exercise with the Telemyo Mini 8/16 EMG system and Skintact F55 unipolar 
surface electrodes (Figure 1B.). We used Noraxon's MyoResearch Master Edition software for 
signal registration and data processing.  
According to the SENIAM international protocol recommendations, we placed the surface 
electrodes on the muscle between the tendon and the motor point. As various artifacts 
contaminated our EMG signals, we performed filtering and other methods to clarify the EMG 
signal. We selected 20 Hz as the low component of the applied bandpass filter to filter out 
movement artifacts caused by the movement of cables or electrodes. We used a notch filter for 
clarifying the AC line noise (50 Hz). We set the high component of the bandpass filter to 350 
Hz for canceling fast oscillations due to unwanted electrical noise. According to the reasons 
mentioned above, the EMG signals had the most significant spectral power in the frequency 
range between 20-350 Hz. After applying the filters (4th-order Butterworth, notch filter), we 
carried out rectification and smoothing. In some cases (BP28), we experienced measurement 
error with the EMG electrode that monitored the left Rectus Abdom. We have removed this 
athlete from further analysis. 
We calculated the root mean squared error (RMS) by applying a moving average window 
(100ms) on the signal for generating an amplitude envelope.  
The exercise test began with a maximal exercise stress test (vita maxima protocol) to determine 
the individual's anaerobic threshold (Figure 1A.). We acquired the vita maxima level by asking 
the athlete to paddle with a pleasant activity starting from 30 Watts, then elevating the intensity 
with 25 Watts in every two minutes until total exhaustion to determine the load capacity and 
anaerobic threshold of the individual. We then assessed the maximum stroke power which the 
athletes reached during vita maxima. After 24 hours, athletes had to perform the incremental 
exercise test protocol (50-60-70-80% of maximum stroke power) again, while we recorded 
stroke force, power, and EMG simultaneously. The second test was a stepwise protocol, a 
standard kayak track was modelled, the athletes had to paddle 4 runs with increasing intensity, 
with one-minute rest between the runs. An intensity of 80% in the final stage can be equated to 
a competitive situation This load profile aimed to eliminate anomalies resulting from individual 
differences in metabolic background and produce physical stress that may be considered equal 
for all participants. We sampled serum lactic acid levels during the exercise.  To determine the 
level of "vita maxima", the conventional spiroergometric criterion system was used in addition 
to the maximum performance: 

● maximal exercise heart rate should be 220-age (1/min; Schiller CS200) 
● the duration of the increasing load should be at least 5-6 minutes 
● Arterial blood pH should be 7.25 or less 
● RER value (RER = CO2 / O2) should be 1.0 or more (Ganshorn PowerCube) 
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● By increasing the load, the oxygen consumption reaches its maximum value (VO2 
curve in plateau or descending phase, VO2max).       

Having gathered all the data simultaneously, we used Python 3 programming environment for 
the data analysis pipeline on a dedicated server. We used pandas for data processing and scipy 
for filter creation and application. Those are scientific data manipulation libraries used 
extensively in research.      
We have discussed the raw signal processing and acquisition steps above together with the EMG 
related postprocessing technique. We used the resulting EMG amplitude envelope to measure 
the intensity of the muscle. When referred to as average intensity during a stroke or tempo, we 
transformed this intensity by taking the arithmetic mean of all measurements in the stroke or 
tempo's timeframe. 
Similarly to this, the output power is post-processed in this way when we observe the athlete's 
output power for one stroke or tempo. Before this step, however, we normalized the strokes. We 
have taken the maximum output power measured for the athlete for one entire stroke and used 
this value to max-normalize the athlete's power readings. By doing it meant dividing the 
instantaneous readings with the vitamax value. When we refer to the normalized average power, 
we simply mean the arithmetic mean of the readings during the stroke or tempo's timeframe. In 
later sections, we will use statistical methods like standard deviation, arithmetic mean, 
correlation to measure dependencies and centralities of the data while describing the EMG 
intensities and output power, or coactivation. We included the used equations in the Appendix 
section. 

Results 

Establishing diagnostic figures and metrics help us to assess how well an athlete can complete 
specific tasks. Figures offer visual cues to understand the behavior of the athlete over time or 
other dimensions. Metrics are condensed forms of some measurements that can make a fair 
comparison between athletes; for instance, how far an athlete can run in 10 minutes or how much 
weight an athlete can lift. Through supervised settings, one can obtain various measurements via 
computer-aided diagnostic environments. These measurements can be fed into algorithms to 
provide metrics about the smallest details of the athlete's performance.  
While studying target output differences, figures we describe in this section helped us to 
diagnose the athlete's ability to complete the task and to give informative results where he could 
improve technique, stamina, or power. For each athlete, we recorded four runs intending to 
maintain a steady 50, 60, 70, and 80% normalized power output measured on the ergometer. We 
recorded normalized power 24h before when we measured the theoretical maximum output 
power for each athlete.  

Figure 2 shows the normalized output power measured on the ergometer over time, with the first 
and the last ten tempos (left-right strokes) removed. Run 0, 1, 2, and 3 depicted by different 
colors show the normalized output power (50, 60, 70, and 80%). With this method, it is easy to 
show that each athlete had a different success of being able to reach and maintain the power 
output at a steady level for the task. Spikes (both in the upward and the downward direction), 
up- or down trends show fatigue or loss of momentum. Athletes received direct feedback about 
their actual normalized power values on a display to know if they are under- or overperforming 
(Figure 2.). To measure and diagnose the correctness of completing the task, one can take the 
arithmetic mean of the normalized output power for different runs and subtract the goal of 50-
80% for each run to measure if the athlete under- or overperformed on the task. On average the 
measured athletes were unable to reach the goal normalized output powers by 2.32% for the 1st 
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run (50%), 2.9% for the 2nd run (60%), 3.95% on the 3rd run (70%) and 4.01% on the 4th run 
(80%), which means that it is increasingly harder to achieve the goal as the output power 
requirement increases. 

 
Figure 2. 12 athletes’ normalized output power (y-axis) measured on the ergometer over time (x-axis), with the 

first and the last ten tempos (left-right strokes) removed. Run 0, 1, 2, and 3 plotted with different colors 
(blue, orange, green, red) show the variation of the normalized output power (50, 60, 70, and 80%). 
One unit on the x-scale represents 20 tempos in all cases.  

One can take the arithmetic mean of the differences of the normalized power outputs and the 
goals for each athlete for each run. Next, one can calculate the average of those four values. 
Negative values characterize underperforming; positive values mean overperforming athletes. 
We observed that reaching the power requirement was increasingly complicated for athletes as 
they approached 100% of the theoretical normalized output (vita maxima). Maintaining the 
required level for the 50% task is less complicated than the same for the 80% task. For 
compensation, one can employ a weighting scheme for the average differences with linearly 
increasing weights given to the more laborious task. Alternatively, one can apply other 
increasing schemes, for instance, quadratic or exponential scenarios. Quadratic and exponential 
weights emphasize the harder to achieve tasks. For instance, the 80% normalized power output 
goal is weighted 64% in the exponential scheme, while weighted only 31% in the linear case, 
the quadratic lies in the middle with 53%. The weights are normalized so that they add up to 1.0. 
After following this strategy, we only had to multiply the goal to actual performance differences 
of individuals with the corresponding weight and sum up for the four runs to get the correctness 
score of an athlete (Table 1.).  
Various weighting schemes provide different overall ranking of the athletes because they 
penalize for different errors. Table 2. summarizes scores and the corresponding ranking of the 
participating athletes sorted by the linear weighting scheme. The first four and the last two ranks 
are the same for all weighting schemes—the ranking changes in the middle with athlete BP31 
having the wildest swings in the ranking. From the Figure showing the power output time series 
(Figure 2), one can identify that the subject (BP31) ran out of stamina and could not complete 
the 80% run. Downward trend characterized the normalized output power, and this behavior 
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returned for the same athlete in the 70% target run. The quadratic weighting of the mean 
difference penalizes BP31 more and lifts others (BP36, BP37), who were able to perform the 
most laborious part better.  

Normalized power Linear weight Quadratic weight Exponential weight 

50% 0.19 0.03 0.03 

60% 0.23 0.13 0.09 

70% 0.27 0.31 0.24 

80% 0.31 0.53 0.64 

Table 1. Different weighting schemes for the normalized output power 

Id Lin. rank Quad. rank Exp. rank Lin weight. 
Quad. 

weight. 
Exp. 

Weigh. 

BP35 1 1 1 1.72 2.19 2.56 

BP28 2 2 2 0.80 1.36 1.49 

BP29 3 3 3 -1.35 -0.47 -0.11 

BP30 4 4 4 -2.28 -2.44 -2.35 

BP31 5 8 10 -2.34 -5.07 -6.35 

BP39 6 6 6 -3.12 -3.87 -4.00 

BP36 7 5 5 -3.68 -3.21 -2.85 

BP38 8 9 8 -4.42 -5.31 -5.43 

BP37 9 7 7 -4.82 -4.84 -4.81 

BP27 10 10 9 -5.21 -5.92 -6.15 

BP25 11 11 11 -5.83 -6.50 -6.70 

BP26 12 12 12 -10.41 -11.37 -11.46 

Table 2.  Ranking of the athletes by the weighted correctness score (w_) 

In general, the proposed metric for power output measurement is the arithmetic mean difference 
between the goal power output and the observed power output. With different weighting and 
penalizing strategies, it is possible to find individualized solutions for helping athletes.     
The variability of the normalized power outputs, which depicts the athletes' movement's fluidity, 
can be measured by the standard deviation of each run. Low standard deviation refers to a set of 
output power measurements dispersed closer to the mean, while a higher standard deviation 
means the measurement points are farther away from the mean on average (Table 3.). As with 
the previous metric Figure 2 shows the power outputs for each run for 50-80% targets. According 
to the previous results, we obtained the standard deviations for each athlete and took the 
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arithmetic mean for each run (12 standard deviations for each run). Results show that the 
standard deviation increases as the target power output rises, meaning it is harder to maintain 
the fluidity of movement and the constant rate of power output when the target output is higher. 
On average for the 12 athletes tested, the average standard deviation was 0.02 for the normalized 
power outputs for the 1st run (50% target output), 0.023 for the 2nd run (60% target output), 
0.26 for the 3rd run (70% target output) and 0.36 for the last 4th run (80% target output). Similar 
weighting schemes may be applied, as shown previously in Table 1, with increasing weights 
given to more laborious tasks (more considerable target output power). The standard deviations 
calculated from the normalized power are directly comparable to the previous setting. The 
theoretical minimum of this metric, which is 0.0, represents the athlete's constant output power 
generation. 

Id Lin. rank Quad. rank Exp. rank Lin weight. 
Quad. 
weight. 

Exp. 
Weigh. 

BP26 1 1 1 1.48 1.57 1.61 

BP30 2 2 2 1.85 2.08 2.15 

BP38 3 3 3 2.09 2.38 2.49 

BP25 4 4 4 2.5 2.66 2.69 

BP27 5 5 5 2.61 2.78 2.82 

BP28 6 6 6 2.62 2.86 2.93 

BP39 7 8 8 2.87 3.09 3.24 

BP35 8 7 7 2.95 2.97 3.01 

BP36 9 9 9 3.1 3.28 3.37 

BP37 10 10 10 3.14 3.44 3.48 

BP29 11 11 11 3.3 4.22 4.65 

BP31 12 12 12 4.84 6.11 6.49 

Table 3. Movement fluidity based on the variability of power output and athlete rankings with different weighting 
schemes 

In general, the closer the standard deviation is to 0.0, the better the athlete maintains the pace 
and the output power. In Table 3, one can observe that the different weighting schemes do not 
significantly change the overall ranking of the athletes. If we do not apply weighting at all, the 
ranking is almost identical to the linear rank, with only one position change. This metric captures 
the information content of a massive downward trend observed at BP31 and BP29. Additionally, 
it correctly observes the high fluidity of movement level of athletes BP26 and BP30. Our 
measurements suggest that the most efficient method of analyzing the fluidity of output power 
is calculating the standard deviation of the normalized output power. In this case, one can 
compare the performances of athletes directly if there is a single target output power goal to 
reach. Alternatively, one can calculate the average of all standard deviations in each run to draw 
results for the training session. A weighting scheme seems unnecessary complication in this 
case. 
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For each stroke and tempo, we can summarize the output power and measure the overall time to 
finish one stroke or tempo. The latter is described as tempo duration and plotted in Figure 3 for 
the 12 athletes. This representation method shows that increasing target output power results in 
a tempo length decrease for almost all athletes. There is a strong negative correlation (-0.681) 
between the normalized output power for each tempo and the output power, meaning that a more 
massive normalized output is associated with a shorter tempo duration (Figure 4).  
Figure 3 shows that athlete BP31 was unable to reach and maintain the 80% target output power 
and was unable to decrease the tempo duration any further. It is also present to some extent in 
tempo duration data of athlete BP27 for the last two output targets (70 and 80%). Interestingly 
for BP27, output power differences of the last two output targets in Figure 2 are more significant 
than observed in the case of BP31. It could mean that the athlete achieves the output power 
difference by not decreasing the tempo duration but using his muscles differently or more 
intensely for completing the task. One might need to use information unveiled with these 
methods for finding the most optimal training and competition tactics.     
We have found that the range of tempo duration differences across target outputs (50-60-70-
80%) is characteristic of athletes. Athlete BP26, BP27, BP28, and BP38 had only a 200 ms full 
tempo duration window across target outputs, while BP36, BP37, BP29 had more than 300 ms 
windows. Athletes with lower ranges were generally the least successful in achieving the 
required target outputs. However, we cannot generalize in the other direction: a more extensive 
duration range does not necessarily mean better performance in reaching the output target 
(Figure 3). 

 
Figure 3. Tempo duration over time (tempo id) for 12 athletes. Run 0, 1, 2, and 3 plotted with different colors 

(blue, orange, green, red) show the variation of the normalized output power (50, 60, 70, and 80%). For 
each stroke and tempo, we can summarize the output power and measure the overall time to finish one 
stroke or tempo. This representation method shows that increasing target output power results in a 
tempo length decrease for almost all athletes. One unit on the x-scale represents 20 tempos in all cases.  

Our next task was to understand the relationships between muscle intensity and output power. 
Figure 5 shows the 5th to 9th tempos of athlete BP26 on 80% target power output (1st subplot) 
and the six combined muscle activity intensities that we collected throughout the observation 
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period for each athlete (2nd-7th subplot). This example shows various muscle activity 
characteristics of kayaking through left and right-handed strokes. Orange color denotes the 
muscle intensity related to the right side for respective muscles, and green shows the left side. 
There is also a third blue line, which denotes the activity threshold as 0.1 (10%) of all the 
normalized muscle intensities for that specific muscle group. Above the 10% threshold, we 
considered the muscle active. One peak in output power is considered a stroke, and two 
consecutive left-right strokes constitute a tempo.   
In Figure 5, one can observe a periodic signal in the output power and some of the muscles (Lat. 
Dorsi, Middle Trap., Pect. Major, Rectus Abdom.). However, this periodic nature is not that 
present in Rectus Fem., and Ant. Deltoid. Rectus Fem. muscles are considered inactive through 
the majority of the time during the example period shown in Figure 5. From the periodically 
active muscles, Lat. Dorsi, Middle Trap., and Pect. Major are single-sided, meaning that only 
one side of the given muscle type contributes to activity during a stroke. As we divided each 
tempo into a left and a right stroke, we can observe that for a left stroke left Lat. Dorsi and left 
Middle Trap., Pect. Major are active. 

 
Figure 4. There is a strong negative correlation (-0.681) between the normalized output power for each tempo and 

the output power, meaning that a more massive normalized output is associated with a shorter tempo 
duration. 

Similarly, for a right stroke right, Lat. Dorsi, right Middle Trap. and the left Pect. Major muscles 
are active. For the Rectus Abdom. being a periodic signal itself, both sides of this muscle group 
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get activated during each stroke. 

Tables 4 and 5 summarizes the periodic muscle activities for each side of the stroke. One can 
observe that Lat. Dorsi and Middle Trap. behave similarly, as demonstrated in Figure 5. Stroke 
side muscle activities are more active (measured by the average activity throughout the stroke); 
however, for Pect. Major, this is not the case for all athletes tested. Some athletes show increased 
activity on the same side, similar to Lat. Dorsi and Middle Trap. (BP29, BP35, and BP27). 
Additionally, activity differences in the case of Pect. Major are not that significant as with the 
other two muscles. It could mean they have a different style or a systematic error in the use of 
the muscles. Athletes BP29 and BP35 are both classified as 2nd grade based on the results they 
were having assumed by a respected coach. In conclusion, this result suggests that they should 
improve muscle coordination to be similar to the others, which may lead to better results on the 
ergometer and the field (at least for this particular set of muscles). 

muscle LT LAT.DORSI LT MIDDLE TRAP. LT PECT. MAJOR 

Stroke type L R L R L R  

Id        

BP25 0.1807 0.0915 0.2414 0.0754 0.0801 0.1145  

BP26 0.1505 0.0938 0.1369 0.1317 0.0385 0.0398  

BP27 0.1459 0.0366 0.2011 0.0990 0.0550 0.0659  

BP28 0.2071 0.0526 0.1997 0.0901 0.0822 0.1638  

BP29 0.1880 0.0608 0.2086 0.0983 0.0723 0.0670  

BP30 0.1590 0.0698 0.1774 0.1380 0.0265 0.0642  

BP31 0.1525 0.0575 0.2322 0.1172 0.0531 0.1070  

BP35 0.2252 0.0385 0.2474 0.1067 0.1072 0.0460  

BP36 0.1746 0.0627 0.2410 0.1436 0.0647 0.0810  

BP37 0.1690 0.0625 0.3069 0.0844 0.0627 0.0787  

BP38 0.1935 0.0563 0.2008 0.1506 0.0645 0.0930  

BP39 0.1663 0.0852 0.2295 0.1843 0.0459 0.1561  

Table. 4. Average left-side periodic muscle intensities per stroke and athletes. 
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Muscle RT LAT.DORSI RT MIDDLE TRAP. RT PECT. MAJOR 

Stroke type L R L R L R 

Id       

BP25 0.0667 0.1581 0.0614 0.2128 0.1022 0.0685 

BP26 0.0669 0.1574 0.1422 0.2775 0.0629 0.0426 

BP27 0.0453 0.1791 0.0983 0.1880 0.0502 0.0541 

BP28 0.0635 0.2037 0.1287 0.2687 0.1253 0.0694 

BP29 0.0603 0.2007 0.1917 0.2595 0.0985 0.0483 

BP30 0.0892 0.1911 0.1699 0.2077 0.0533 0.0351 

BP31 0.0580 0.1577 0.0792 0.2453 0.1559 0.0693 

BP35 0.0372 0.2050 0.0985 0.2473 0.0570 0.0676 

BP36 0.0465 0.1468 0.1115 0.1906 0.0830 0.0342 

BP37 0.0923 0.1871 0.0640 0.2257 0.1074 0.0807 

BP38 0.1058 0.2062 0.1132 0.1248 0.0934 0.0479 

BP39 0.0750 0.1579 0.1220 0.2810 0.1342 0.0571 

Table 5. Average right-side periodic muscle intensities per stroke and athletes. 

If we observe muscle activity in general (Table. 6.) aggregated by runs, we can draw a 
classification for those muscles that were not that obvious in the first demonstration as to what 
class they belong to. Table 6. shows this aggregation, where we can draw the conclusion that 
Ant. Deltoid, Lat. Dorsi, Middle Trap., and Rectus Fem. are more intensely active on the same 
side as the stroke itself, while Pect. Major and Rectus Abdom. are more active on the opposite 
side of the body compared to the stroke. With these results, we can conclude this is the expected 
behavior from athletes, and where this is not present, they might increase their output by 
coordinating the muscles in the right direction. 

One can also observe that by increasing the output from 50 to 80% of vita maxima, we can see 
an increase in almost all muscle (LT Ant. Deltoid has a slight decrease in 80% vita maxima) 
activities, which could also be an essential observation during training. For example, if we do 
not see this increased activity in one particular muscle, we can warn the athlete that he needs 
more activity on that muscle in order to paddle correctly. The average muscle intensity difference 
in specific muscles (Rectus Abdom., Rectus Fem.) is not significant, which means that if the 
athlete performs adequately based on normalized output power but lacks the coordination in 
these two less distinctive muscle groups, they might not have to change the overall style. Some 
of our future work will focus on these muscles to study whether they significantly impact the 
output power or not.  
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Muscle (R prefix: right side; 
L prefix left side) 

Run 0 1 2 3 

Class 
Stroke 
type     

LT ANT.DELTOID L 0.1491 0.1511 0.1607 0.1693 

same side R 0.1174 0.1259 0.1331 0.1271 

LT LAT.DORSI L 0.1499 0.1690 0.1815 0.2019 

same side R 0.0548 0.0608 0.0657 0.0722 

LT MIDDLE TRAP. L 0.2096 0.2140 0.2236 0.2251 

same side R 0.0983 0.1091 0.1235 0.1394 

LT PECT. MAJOR L 0.0470 0.0569 0.0669 0.0792 
opposite 

side R 0.0689 0.0808 0.0929 0.1121 

LT RECT.ABDOM.LO. L 0.0428 0.0480 0.0547 0.0647 
opposite 

side R 0.0521 0.0566 0.0675 0.0794 

LT RECTUS FEM. L 0.0356 0.0421 0.0434 0.0480 

same side R 0.0335 0.0394 0.0395 0.0437 

RT ANT.DELTOID L 0.1407 0.1505 0.1544 0.1561 

same side R 0.1554 0.1625 0.1707 0.1812 

RT LAT.DORSI L 0.0583 0.0635 0.0693 0.0761 

same side R 0.1577 0.1704 0.1854 0.2028 

RT MIDDLE TRAP. L 0.0956 0.1045 0.1200 0.1387 

same side R 0.2123 0.2221 0.2317 0.2411 

RT PECT. MAJOR,uV 
PROC 

L 0.0674 0.0833 0.1006 0.1193 
opposite 

side R 0.0406 0.0492 0.0613 0.0716 

RT RECT.ABDOM.LO. L 0.0562 0.0663 0.0800 0.0898 
opposite 

side R 0.0477 0.0549 0.0596 0.0661 

RT RECTUS FEM. L 0.0423 0.0456 0.0475 0.0497 

same side R 0.0578 0.0552 0.0570 0.0616 

Table 6. Classification of muscle activities in general based on their activation patterns during runs 
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Figure 5. Relationships between muscle intensity and output power. Tempos 5th to 9th of athlete BP26 on 80% 

target power output (1st subplot) and the six combined muscle activity intensities that we collected 
throughout the observation period for each athlete (2nd-7th subplot). Orange color denotes the muscle 
intensity related to the right side for respective muscles, and green shows the left side. Above the 10% 
threshold (blue line), we considered the muscle active. One peak in output power is considered a stroke, 
and two consecutive left-right strokes constitute a tempo.   

We should also note that with our system, more nuanced analysis is available for each athlete. 
For example, lags between muscle activity peaks and the result in output power. However, this 
is part of the future work that we plan to accomplish. 
In summary, the computational methods used in this section are simple but effective ways to 
measure athletes' performance in a laboratory setting. The corresponding formulae for 
computing the arithmetic mean, moving average, and root mean squared error is included in the 
appendix section. 
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Asymmetry 
One other particular phenomenon observed from Figure 6 tempos is that athlete BP26 has an 
asymmetric stroke style: left strokes are generally less potent than right strokes in this example. 
We can consider these observations as a particular style of kayaking (Table 7.). We can calculate 
the power output asymmetry by taking the difference of the arithmetic mean average of the right 
and left strokes that occurred in a particular target output. One athlete out of the 12 has a stronger 
left stroke (BP38), while the others have a more robust or similar left stroke. The magnitude of 
the average difference throughout the measurement period depicts which athlete has this 
particular asymmetric style and for which side he exhibits this behavior. For example, BP37 has 
an average difference of 12% in normalized output power; if he were to improve the other, less 
capable side, he could reach more power output and perhaps more speed on the water. Some 
athletes do not exhibit this phenomenon and remain in a +/-3% difference range: for example, 
athlete BP36 has almost identical strokes in terms of output power regardless of which side the 
stroke occurs. 

Id 50% 60% 70% 80% Average difference 

BP25 0.0383 0.0310 0.0702 0.1294 0.0753 

BP26 0.0577 0.0672 0.0742 0.0682 0.0663 

BP27 0.0077 0.0017 0.0231 0.0379 0.0223 

BP28 0.0634 0.0549 0.0785 0.1116 0.0828 

BP29 0.0178 0.0161 0.0367 0.0726 0.0371 

BP30 0.0011 0.0089 0.0008 0.0343 0.0138 

BP31 0.0424 0.0909 0.0857 0.1040 0.0823 

BP35 0.0459 -0.0043 0.0348 0.0535 0.0419 

BP36 0.0425 0.0251 0.0100 0.0003 0.0123 

BP37 0.0616 0.0846 0.1329 0.1935 0.1252 

BP38 -0.0070 -0.0448 -0.0497 -0.0323 -0.0330 

BP39 0.0559 0.0515 0.0576 0.0528 0.0528 

Table 7. Stroke asymmetries 

The output power increase has a different effect on the athlete in terms of this asymmetry. In the 
case of BP25, BP27, BP29, and BP37 we see a definite increase in asymmetry. However, for 
BP36 we see a monotonic decrease. The increase means that the athlete develops more power 
on his strong side than on the weaker side, focusing more effort on the strong side. The decrease 
means that the weaker side gets more emphasis on trying to deliver the required output power. 
In other cases, there is no clear trend. In general, the asymmetry measure value increases as we 
go from the 50% target output towards the 80% target output. In the previous section, we devised 
a measurement scheme to obtain a score for each athlete's correctness to quantify how well they 
could complete the task.  
In the future, we plan to analyze the significant kayaking styles better and identify effective ones 
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with adequate and timely muscle activity involvement. 

 
Figure 6. The time-normalized average muscle intensities for each of the four normalized target outputs of athlete 

BP26. We depict the general periodic behaviour of the muscles through time and the power output (first 
row). Based on our results, BP26 has an asymmetric stroke style: left strokes are generally less potent 
than right strokes. We can consider these observations as a particular style of kayaking. The asymmetry 
of power output throughout each output threshold can be measured by taking the difference of the 
average of the right and left strokes that occurred in a particular target output.  

Muscle intensity vs. output power 
To understand the effect a muscle intensity has on the normalized power output, we have taken 
all measurement samples and derived the linear correlation coefficient between the normalized 
output power and each muscle intensity. Correlation is a measure of the strength of a linear 
relationship between two quantitive variables. Positive correlation is a relationship between two 
variables in which both variables move the same direction, while negative correlation is a 
relationship where one variable increases as the other decreases. We included the used formula 
in the Appendix section. We selected left and right-side strokes separately because we have 
shown that there is a difference between activation and muscle intensity in regard to the side of 
the strokes. (Table 8.) While correlation does not imply causation, it is safe to assume that 
increased muscle intensity affects normalized power output. We observed exciting patterns, as 
described below: 
The most significant positive correlation with normalized output power is the Lat. Dorsi muscle. 
The right Lat. Dorsi has a significant positive      correlation (0.7119) on normalized output 
power for the right strokes and the left Lat. Dorsi to the left strokes (0.6751). There is a weak 
negative relationship with the other sides (Left Lat. Dorsi to right stroke: -0.1766, Right Lat. 
Dorsi to left stroke: -0.1920), respectively. Middle Trap. behaves similarly to Lat. Dorsi with a 
slightly lower but still strong correlation effect on the same side (Left Middle Trap. to left stroke: 
0.5052, Right Middle Trap. to right stroke: 0.5742), and a slightly more negative impact on the 
opposite side stroke (Left Middle Trap to right stroke: -0.2738, Right Middle Trap to left stroke: 
-0.3321). Pect. Major, as we have seen, has its effect on the opposite side: higher intensity in the 
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left muscle while a right stroke increases the normalized power output (0.5425). Similarly, the 
increased right muscle intensity correlates with increased normalized power output on left 
strokes (0.5808). For the same side strokes, they do not influence the normalized power output. 
These three muscle groups are the most influential in defining the output power. They operate 
on a single side only, meaning that improving the muscles only affects one side at a time.  

Muscle Left stroke Rght stroke 

LT ANT.DELTOID,uV PROC -0.5254 0.2271 

LT LAT.DORSI,uV PROC 0.6751 -0.1766 

LT MIDDLE TRAP.,uV PROC 0.5052 -0.2738 

LT PECT. MAJOR,uV PROC 0.0184 0.5425 

LT RECT.ABDOM.LO.,uV PROC 0.3139 0.4929 

LT RECTUS FEM.,uV PROC 0.2341 -0.0995 

RT ANT.DELTOID,uV PROC 0.1549 -0.5472 

RT LAT.DORSI,uV PROC -0.1920 0.7119 

RT MIDDLE TRAP.,uV PROC -0.3321 0.5742 

RT PECT. MAJOR,uV PROC 0.5808 0.0965 

RT RECT.ABDOM.LO.,uV PROC 0.5252 0.3644 

RT RECTUS FEM.,uV PROC -0.1288 0.3429 

Table 8. Muscle intensity (EMG) and output power correlation. 

Interestingly Ant. Deltoid has a robust negative effect on normalized output power for the same 
side stroke (Left stroke: -0.5254, Right stroke: -0.5472) and has a little positive effect on the 
opposite side stroke (Left stroke: 0.1549, Right stroke: 0.2271). This muscle group hinders the 
normalized output more than it provides an increase.  
The most exciting muscle group is Rectus Abdom. in these terms, as it provides a moderate and 
robust effect on normalized power output on both sides (Left muscle to left stroke: 0.3139, Left 
muscle to right stroke: 0.4929, Right muscle to left stroke: 0.5252, Right muscle to right stroke: 
0.3644). Therefore, increasing the capabilities and control of this muscle group may result in 
increased normalized output. The muscle group reflects the idea of holding the torso steady for 
each stroke in order to perform the pedaling motion correctly. 

In order to study the general periodic behavior of the muscles over time, we computed time-
normalized average muscle intensities for each of the four normalized target outputs (Figure 6). 
We can observe the ever-increasing muscle intensity for all four target normalized outputs. Lat. 
Dorsi has a lag: the peak intensity precedes peak output power and is the most intensely used 
muscle. Rectus Fem. generally follows the curve of Lat. Dorsi, while on average, has 
significantly lower intensity values. Rectus Fem. seems to be multimodal, peaking at different 
points in relative time: the maximum value for the left muscle at 0-5% of the stroke length during 
the left stroke phase a smaller local maximum at 30% and 70% relative time. The same is true 
for the right muscle: during the right stroke phase starting point, the maximum intensity is 
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reached. Next, at 70% relative time, there is a local maximum and another at 15-20%. One can 
note that local maximums are both below 0.1 relative intensity, which is considered muscle 
inactivity. 
Pect. Major is also multimodal in the sense that the left muscle is at maximum during the right 
stroke phase, and there is a local maximum at the same relative time during the start of the left 
stroke phase. Interestingly Ant. Deltoid muscles do not observe that significant difference 
between target outputs—the intensity for the right muscle peaks after the right Lat. Dorsi muscle, 
almost at 90% relative time, followed by a local maximum during the end of the left stroke phase 
at around 20%. A local minimum is reached precisely at the point where the right stroke starts 
to gain power. The same is true for the left muscle; one can observe a peak intensity value after 
the peak value of left Lat. Dorsi (at around 40% of the tempo, end of the left stroke), followed 
by a local maximum during the right stroke phase at around 70% total normalized time. 
Rectus Abdom. LO. follows similar characteristics as Pect. Major at the same normalized times, 
although at around half the intensity as Pect. Major. 
Middle Trap. muscles maximum intensity is reached during the same stroke phase as the side of 
the muscle. These muscles have the longest time when they are active. There is a new waveform 
during the opposite side strokes with two distinct local maxima after the stroke's power starts to 
decline, which would need further investigation in future studies. 
In conclusion, we can observe that muscle usage patterns are characteristics of individuals. 
Furthermore, we can identify an individual's weaknesses in specific muscle strength compared 
to the athletes' overall samples. As soon as we identify clusters based on anatomical features and 
performance categories, we can advise on training strategy based on the individuals' muscle 
pattern.   

Coactivation 
The last chapter offers some insights that there are muscles that are active concurrently; this 
phenomenon is called coactivation. To measure coactivation, we set a 10% activation threshold 
for each muscle. 
Figure 7 shows the coactivation of different muscles for 70% normalized target output. The 
characteristics of coactivation do not change at different levels of the target output, The 
coactivation ratio increases slightly, but no new muscle combinations get activated as the target 
output increases. 
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Figure 7. Coactivation of different muscles for 50-60-70-80% normalized target output for the period of an entire 

tempo (x-axis). Muscle groups and runs (0,1,2,3) are depicted on the y-axis. The coactivation rate of 2 
muscles is high (black) when they are active at the same time and low (white) when they are inactive. 
The x-axis represents the percentage of the total tempo time. The color bar on the right codes the 
coactivation level (0-1). 

Figure 8 shows the overall coactivation percentage of different muscles. The diagonal of the 
matrix shows the average activity for each muscle. The most active muscles are the left      end 
right Ant. Deltoid (51% and 56% overall average activity) and left and right Middle Trap. 
followed by left and right Lat. Dorsi and left and right Pect. Major. 

As for the coactivation, there are only a handful of combinations where we can observe strong 
coactivation intensities, which we can measure here by counting the samples where the muscles 
were active together, divided by all measured samples. 
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     Figure 8. The overall coactivation percentage of different muscles at 70% target output (run 3).  

Ant. Deltoid and Middle Trap. muscle groups showed the strongest coactivation. The opposite 
side muscle combinations have stronger coactivation (left Ant. Deltoid - right Middle Trap.: 
38%, right Ant. Deltoid - left Middle Trap.: 42%), while the same-side coactivations have lower 
values (29% for the right side and 28% for the left side). Lat. Dorsi and Middle Trap. also has a 
strong coactivation of the same sides: left 20% and right 22%. 
Figure 7 shows that by increasing the target normalized output power, more intensity and a 
broader activity phase are present for almost all muscles. Ant. Deltoid and Middle Trap. exhibit 
increase in intensity as well, but the range where the muscle is active does not change 
significantly. The only change is that the start and end points of the period where the muscle is 
active shifts closer to the start of the tempo. 
This information can be used for individual athletes to correct errors and help them to work on 
the strategy to achieve better muscle coordination similarly as described above for asymmetry 
and muscle intensity-power analysis. 
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Muscle intensity correlations 

 
Figure 9. The average intensity of muscle groups during a specific stroke. Squares denote right strokes and circles 

denote left strokes. The color of the intensity reflects the normalized output power associated with that 
particular stroke. BP27 (first set of 6 subplots (A), taken from a short distance kayak athlete with a 1st 
place at a World Championship) and BP39 (second set of 6 subplots (B), a mid-distance kayaker). The 
unit on the x and y-axis is microvolt. 
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Figure 9 shows the average intensity of muscle groups from each side during a specific stroke. 
Squares denote right strokes and circles denote left strokes. The color of the intensity reflects 
the normalized output power associated with that particular stroke. The plots can be useful to 
compare the individual characteristics and styles of an athlete to another. For example, BP27 
(first set of 6 subplots, representative of a short-distance athlete with a 1st place World 
Championship) and BP39 (the second set of 6 subplots, originates from a mid-distance kayaker). 
We can observe how BP39 uses Ant. Deltoid muscles differently: the left and right stroke are 
not easily distinguishable from the chart; both of the muscles have similar activities. BP27, 
however, uses the left Ant. Deltoid more in a left stroke and lets the right Ant. Deltoid rest. One 
can observe a similar pattern on the right side during the right stroke. Also, BP27 uses Lat. Dorsi 
muscles differently: having one side of muscles work intensely while the other side entirely rests.  
One can see more clustered behavior with Pect. Major and Rectus Abdom. BP27 has these 
muscle activities more packed, more clustered, however more relaxed overall. It could mean that 
the BP27 might have more developed muscles and BP27 does not need as much intensity to 
achieve the same result. Otherwise, this might be a characteristic of how these muscles should 
behave in order to be extremely efficient. 
With these methods, we can perform sophisticated analysis by utilizing the connection between 
power and muscle coordination/intensities. 

Discussion 

For both the kayak athlete and coach, receiving objective feedback of the athletes' performance 
during the training is of pivotal importance. The instructions athletes receive during these 
sessions will determine how they carry out the training and competition in the desired range of 
load. The most common feedback, which is, to some degree frequently used, is heart rate 
monitoring (Borges et al., 2015). One can use the connection between heart rate and metabolism 
to evaluate individual heart rate zones in which the athlete uses different substrates (e.g., 
carbohydrates, fatty acids, and others) to provide energy. Training in different zones strengthens 
the connected processes to provide energy, allowing the athlete to perform better during the 
related load conditions. While previous groups concluded that there are differences between on-
ergometer and on-water kayaking with this regard (Fleming, Donne, & Fletcher, 2012; Fleming, 
Donne, Fletcher, et al., 2012; Hunter, Cochrane, & Sachlikidis, 2008), ergometer training is still 
a widely used tool during winter and to study the different aspects of kayaking (Jones & Peeling, 
2014; Michael, Rooney, & Smith, 2008; Winchcombe et al., 2019). In our exercise stress – kayak 
ergometer setting by using the vita maxima and vita sub-maximal test load profiles, we were 
able to eliminate anomalies resulting from individual differences in the metabolic background, 
thus producing physical stress equal for all participants.  

A required next step was to be able to increase velocity on the water with the same load or the 
same effort during kayaking. It is related to the paddling power and technique of the athlete. 
Several studies observed paddling techniques in controlled environments (in laboratories) using 
a kayak-ergometer, where they quantified different variables such as electromyogram (EMG) 
signal of different muscles, stroke force, kinematics (Fleming, Donne, Fletcher, et al., 2012; 
Michael et al., 2008), different physiological traits, such as heart rate, metabolic values, oxygen 
consumption (Michael et al., 2008; Tesch, 1983). In our study, we were able to set up 
personalized targets calculated from the vita maxima protocol. We provide immediate feedback 
to the kayak athletes on how they perform under different target ratios and succeed in reaching 
and maintaining the power output at a steady level.  
Based on our data, if there are more runs with differing goals, a weighting scheme is better to be 
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applied, with higher weights given to higher goal output and lower weights given to lower goal 
output powers. While overperforming is generally preferable to underperforming during a 
training session, it is better to be as close as possible to the goal output power that the coach or 
trainer gave. Maintaining this constant power is complicated. Significant fluctuations measured 
in rowing power around a target output mean that the athlete's motion is not fluid; a lower 
average output period is followed by an increased output period. It is better to have lower 
variability in the output measurements to maintain the fluidity of motion and stroke length and 
prevent injuries caused by sudden increases in the movement to get back to the target goal. 
Measurement of the muscle intensities allows us to study the relationship between output power 
and the combined intensities of the muscles, understand how they work together, how each of 
them influences the periodic power outputs, which muscles are active during a stroke. Using this 
approach, we tested stroke kinematics under maximal exercise load conditions, and we managed 
to pinpoint specific muscles and activity patterns responsible for the best power output and 
fluidity of paddling. Earlier seminal EMG studies pinpointed the importance of EMG 
measurements for stroke kinematics in kayakers (Fleming, Donne, & Mahony, 2014). Our result 
suggests that kayak athletes should improve the muscle coordination to be similar to the others, 
which may lead to better results on the ergometer and the field as well (at least for this particular 
set of muscles or paddling asymmetry). We also described which muscles coactivate during 
kayaking. This coactivation pattern recognition is individualized, and we intend to correlate 
these findings with freshwater performance and video analysis.  

Conclusions 

We developed a continuous performance and biological signal measurement system for 
recording and processing the performance of athletes on an ergometer under controlled 
laboratory conditions. We managed to synchronize the commercial sensor signals. We will 
further analyze the big dataset acquired by artificial intelligence-based algorithms. 
Our further plans are developing a closed-loop system that includes an automated analytical 
software background to provide instant audiovisual feedback towards the athlete and coach and 
for providing automated performance optimization based on machine and potentially deep 
learning. We plan to carry out more measurements from athletes and extend the force and EMG 
measurement with movement analysis. Applying cluster analysis and machine learning for 
performance development is the next step for our research group.    
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Appendix 

Arithmetic mean of observations: 
 

 (1) 

Correlation between two random variables: 

 

 (2) 

, where xi and yi refers to the samples measured, while sx, sy refers to the standard deviations. 
Moving average of an observed random variable p: 

   
 (3) 

Root mean squared error of measurements yi: 

 

 (4) 

  Sample standard deviation: 
 

 (5) 
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